Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[87]

тия также неизвестна. Разработчикам DES было известно о дифференциальном криптоанализе, и его S-блоки были оптимизированы соответствующим образом. Скорее всего, о линейном криптоанализе они не знали, и S-блоки DES очень слабы по отношению к такому способу вскрытия [1018]. Случайно выбранные S-блоки в DES были бы слабее против дифференциального криптоанализа, но сильнее против линейного криптоанализа.

С другой стороны случайные S-блоки могут не быть оптимальными по отношению к данным способам вскрытия, но они могут быть достаточно большими и, следовательно, достаточно надежными. Кроме того, они, скорее всего, будут достаточно устойчивы и против неизвестных способов вскрытия. Спор все еще кипит, но лично мне кажется, что S-блоки должны быть такими большими, насколько это возможно, случайными и зав и-сеть от ключа.

Проектирование блочного шифра

Проектировать блочный шифр нетрудно. Если вы рассматривает 64-битовый блочный шифр как перестано в-ку 64-битовых чисел, ясно, что почти все эти перестановки безопасны. Трудность состоит в проектировании блочного шифра, который не только безопасен, но также может быть легко описан и просто реализован.

Легко можно спроектировать блочный шифр, если вы используете память, достаточную для размещения S-блоков 48*32. Трудно спроектировать небезопасный вариант DES, если вы собираетесь использовать в нем 128 этапов. При длине ключа 512 битов не стоит беспокоиться о том, нет ли какой-либо зависящей от ключа ко м-плиментарности.

14.11 Использование однонаправленных хэш-функций

Сымым простым способом использовать для шифрования однонаправленную хэш-функцию является хэш и-рование предыдущего блока шифротекста, объединенного с ключом, а затем выполнение XOR результата с т е-кущим блоком открытого текста:

С, = P, © H(K, См)

P, = С, © H(K, P,4)

Установите длину блока равной длине результата однонаправленной хэш-функции. По сути это приводит к использованию однонаправленной хэш-функции как блочного шифра в режиме CFB. При помощи аналогичной конструкции можно использовать однонаправленную хэш-функцию и в режиме OFB:

С, = P, © S,; S, = H(K, См)

P, = С, © S, = H(K, См)

Надежность такой схемы определяется безопасностью однонаправленной хэш-функции. Earn

Этот метод, изобретенный Филом Карном (Phil Karn) и открытый им для свободного использования, создает обратимый алгоритм шифрования из определенных однонаправленных хэш-функций.

Алгоритм работает с 32-байтовыми блоками открытого текста и шифротекста. Длина ключа может быть произвольной, хотя определенные дины ключей более эффективны для конкретных однонаправленных хэш-функций. Для однонаправленных хэш-функций MD4 и MD5 лучше всего подходят 96-байтовые ключи.

Для шифрования сначала разбейте открытый текст на две 16-байтовых половины: Р/ и Pr. Затем разбейте на две 48-байтовых половины ключ: K/ и Kr.

P= P/ , Pr,

K = K/ , Kr

Добавьте K/ к P/ и выполните хэширование однонаправленной хэш-функцией, затем выполните XOR резул ь-тата с Pr, получая Сг, правую половину шифротекста. Затем, добавьте Kr к Сг выполните хэширование однонаправленной хэш-функцией. Выполните XOR результата с Р/ , получая С/. Наконец, объедините Сг и С/ , получая шифротекст.

Сг = Pr © Я(Р/, K/)

С/ = P/ © Я(Сг, Kr)

С = С/, Сг

Для дешифрирования просто инвертируйте процесс. Добавьте Kr к Сг, выполните хэширование и XOR р е-зультата с С/ , получая P/. Добавьте K/ к P/, выполните хэширование и XOR результата с Сг , получая Pr.


Pi = C © H(Cr, Kr) Pr = Cr © H(Pi, Ki)

P = Pi, Pr

Общая структура Karn совпадает с структурой множества других блочных алгоритмов, рассмотренных в этом разделе У алгоритма только два этапа, так как его сложность определяется однонаправленной хэш-функцией А, так как ключ используется только как вход хэш-функции, он не может быть раскрыт даже при помощи вскрытия с выбранным открытым текстом, если, конечно, безопасна используемая однонаправленная хэш-функция

Luby-Rackoff

Майкл Любы (Michael Luby) и Чарльз Ракофф (Charles Rackoff) показали, что Karn не является безопасным [992] Рассмотрим два одноблочных сообщения: AB и AC Если криптоаналитику известны открытый текст и шифротекст первого сообщения, а также первая половина открытого текста второго сообщения, то он может легко вычислить все второе сообщение Хотя такое вскрытие с известным открытым текстом работает только при определенных условиях, оно представляет собой главную проблему в безопасности алгоритма

Ее удается избежать при помощи трехэтапного алгоритма шифрования [992,1643,1644] Он использует три различных хэш-функции: H1, H2 и H3 Дальнейшие исследования показали, что H1 может совпадать с H2, или H2 может совпадать с H3, но не одновременно [1193] Кроме того, H1, H2 и H3 не могут быть основаны на итерациях одной и той же базовой функции [1643] В любом случае при условии, что H(k,x) ведет себя как псевдослучайная функция, трехэтапная версия выглядит следующим образом:

(1)Разделите ключ на две половины: Ki и К

(2)Разделите блок открытого текста на две половины: L0 и

(3)Объедините Ki и L0 и выполните хэширование Выполните XOR результата хэширования с R0, получая R1: R1= Ro © H(Ki, Lo)

(4)Объедините Kr и R1 и выполните хэширование Выполните XOR результата хэширования с L0, получая L1 L1 = Lo © H(Kr, R1)

(5)Объедините Ki и L1 и выполните хэширование Выполните XOR результата хэширования с R1, получая R2: R2= R1 © H(Ki, L1)

(6)Объедините L1 и R2, получая сообщение

Шифр краткого содержания сообщения

Шифр краткого содержания сообщения(Message Digest Cipher, M DC), изобретенный Питером Гутманном (Peter Cutmann) [676], представляет собой способ превратить однонаправленные хэш-функции в блочный шифр, работающий в режиме CFBz Шифр работает почти также быстро, как и хэш-функция, и по крайней мере н а-столько же безопасен Оставшаяся часть этого раздела предполаг ает знакомство с главой 18

Хэш функции, например MD5 и SHA, используют 512-битовый текстовый блок для преобразования входн ого значения (128 битов в MD5, и 160 битов в SHA) в результат того же размера Это преобразование необрат и-мо, но прекрасно подходит для режима CFB: и для шифрования, и для дешифрирования используется одна и та же операция

Рассмотрим MDC с SHAz MDC использует 160-битовый блок и 512-битовый ключ Используется побочный эффект хэш-функции, когда в качестве прежнего хэш-значения берется входной блок открытого текста (160 б и-тов), а 512-битовый вход хэш-функции играет роль ключа (см РисОбычно при использовании хэш-

функции для хэширования некоторого входа 512-битовый вход меняется при хэшировании каждого нового 512-битового блока Но в данном случае 512-битовый вход становится неизменяемым ключом

MDC можно использовать с любой однонаправленной хэш-функцией: MD4, MD5, Snefru, и Он незап а-тентован и может быть совершенно бесплатно использован кем угодно когда угодно и для чего угодно [676 ]

Однако лично я не верю в эту схему Можно подобрать такой способ взлома, на противостояние которому хэш-функция не была рассчитана Хэш-функции не обязаны противостоять вскрытию с выбранным открытым текстом, когда криптоаналитик выбирает некоторые начальные 160-битовые значения, получает их "зашифрованными" одним и тем же 512-битовым "ключом" и пользуется этим для получения некоторой и н-формации об используемом 512-битовом ключе Так как разработчики хэш-функций не должны беспокоиться о такой возможности, считать ваш шифр безопасным по отношению к приведенному способу вскрытия - не лу ч-


шая идея.

Безопасность шифров, основанных на однонаправленных хэш-функциях

Хотя эти конструкции и могут быть безопасными, они зависят от используемой однонаправленной хэш-функции. Хорошая однонаправленная хэш-функция не обязательно дает безопасный алгоритм шифрования. Существуют различные криптографические требования. Например, линейный криптоанализ бесполезен против однонаправленных хэш-функциях, но действенен против алгоритмов шифрования. Однонаправленная хэш-функция, такая как SHA, может обладать определенными линейными характеристиками, которые, не влияя на ее безопасность как однонаправленной хэш-функции, могут сделать небезопасным ее использование в таком алгоритме шифрования, как MDC. Мне неизвестно ни о каких результатах криптоанализа использования ко н-кретной однонаправленной хэш-функции в качестве блочного шифра. Прежде чем использовать их дождитесь проведения подобного анализа.

Выходное. значение

Блок сообщения

Выходное значение

Хэш-функция

Открытый текст

-► Шифротекст

(а) Хэш-функция(b) Хэш-функция как блочный шифр в режиме cfb

Рис. 14-5. Шифр краткого содержания сообщения (MDC).

14.12 Выбор блочного алгоритма

Это очень трудное решение. DES почти наверняка небезопасен при использовании против правительств в е-ликих держав, если только вы не шифруете одним ключом очень малые порции данных. Возможно этот алг о-ритм пока неплох против кого-нибудь другого, но вскоре и это изменится. Машины для вскрытия ключа DES грубой силой скоро станут по карману всем организациям.

Предложенные Бихамом зависимые от ключа S-блоки DES будут безопасны в течение по крайней мере н е-скольких лет, может быть за исключением использования против самых хорошо обеспеченных противников. Если необходимая безопасность должна быть обеспечена на десятилетия, или вы опасаетесь криптоаналитич е-ских усилий правительств великих держав, воспользуйтесь тройным DES с тремя независимыми ключами.

Небеполезны и другие алгоритмы. Мне нравится Blowfish, потому что он быстр, и потому что я его прид у-мал. Неплохо выглядит 3-WAY, возможно все в порядке и с ГОСТом. Проблема посоветовать что-нибудь с о-стоит в том, что NSA почти наверняка обладает набором эффективных криптоаналитических приемов, которые до сих пор засекречены, и я не знаю, какие алгоритмы могут быть вскрыты. В Табл. 14.3 для сравнения прив едены временные соотношения для некоторых алгоритмов.

Мой любимый алгоритм - IDEA. Его 128-битовый ключ в сочетании с устойчивостью к общеизвестным средствам криптоанализа - вот источники моего теплого и нежного чувства к этому алгоритму. Этот алгоритм анализировался различными группами, и никаких серьезных замечаний не было опубликовано. В отсутствие необычайных криптоаналитических прорывов я сегодня ставлю на IDEA.

Табл. 14-3.

Скорости шифрования для некоторых блочных шифров на i486SX/33 МГц

АлгоритмСкорость шифрованияАлгоритмСкорость шифрования

(Кбайт/с) (Кбайт/с)

Blowfish (12 этапов)182MDC (с MD4)186



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15] [стр.16] [стр.17] [стр.18] [стр.19] [стр.20] [стр.21] [стр.22] [стр.23] [стр.24] [стр.25] [стр.26] [стр.27] [стр.28] [стр.29] [стр.30] [стр.31] [стр.32] [стр.33] [стр.34] [стр.35] [стр.36] [стр.37] [стр.38] [стр.39] [стр.40] [стр.41] [стр.42] [стр.43] [стр.44] [стр.45] [стр.46] [стр.47] [стр.48] [стр.49] [стр.50] [стр.51] [стр.52] [стр.53] [стр.54] [стр.55] [стр.56] [стр.57] [стр.58] [стр.59] [стр.60] [стр.61] [стр.62] [стр.63] [стр.64] [стр.65] [стр.66] [стр.67] [стр.68] [стр.69] [стр.70] [стр.71] [стр.72] [стр.73] [стр.74] [стр.75] [стр.76] [стр.77] [стр.78] [стр.79] [стр.80] [стр.81] [стр.82] [стр.83] [стр.84] [стр.85] [стр.86] [стр.87] [стр.88] [стр.89] [стр.90] [стр.91] [стр.92] [стр.93] [стр.94] [стр.95] [стр.96] [стр.97] [стр.98] [стр.99] [стр.100] [стр.101] [стр.102] [стр.103] [стр.104] [стр.105] [стр.106] [стр.107] [стр.108] [стр.109] [стр.110] [стр.111] [стр.112] [стр.113] [стр.114] [стр.115] [стр.116] [стр.117] [стр.118] [стр.119] [стр.120] [стр.121] [стр.122] [стр.123] [стр.124] [стр.125] [стр.126] [стр.127] [стр.128] [стр.129] [стр.130] [стр.131] [стр.132] [стр.133] [стр.134] [стр.135] [стр.136] [стр.137] [стр.138] [стр.139] [стр.140] [стр.141] [стр.142] [стр.143] [стр.144] [стр.145] [стр.146] [стр.147] [стр.148] [стр.149] [стр.150] [стр.151] [стр.152] [стр.153] [стр.154] [стр.155] [стр.156] [стр.157] [стр.158] [стр.159] [стр.160] [стр.161] [стр.162] [стр.163] [стр.164] [стр.165] [стр.166] [стр.167] [стр.168] [стр.169] [стр.170] [стр.171] [стр.172] [стр.173] [стр.174] [стр.175] [стр.176] [стр.177] [стр.178] [стр.179] [стр.180] [стр.181] [стр.182] [стр.183] [стр.184] [стр.185] [стр.186] [стр.187] [стр.188] [стр.189] [стр.190] [стр.191] [стр.192] [стр.193] [стр.194] [стр.195] [стр.196] [стр.197] [стр.198] [стр.199] [стр.200] [стр.201] [стр.202] [стр.203]