Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[135]

u = modexp ((p+l)/4, t, p-l); v = modexp ((q+l)/4, t, q-l); w = modexp (xt%p, u, p); z = modexp (xt%p, v, q); return (b*q*w + a*p*z) % n;

При наличии x0 дешифрирование несложно . Просто задайте стартовую последовательность генератора BBS и выполните XOR результата с шифротекстом.

Эту схему можно сделать еще быстрее, используя все известные безопасные биты x,, а не только младший значащий бит. С таким улучшением вероятностное шифрование Blum-Goldwasser оказывается быстрее RSA и не допускает утечки информации об открытом тексте . Кроме того, можно доказать, что сложность вскрытия этой схемы равна сложности разложения n на множители.

С другой стороны, эта схема совершенно небезопасна по отношению к вскрытию с выбранным шифроте к-стом. По младшим значащим битам правильных квадратичных остатков можно вычислить квадратный корень любого квадратичного остатка. Если это удастся, то удастся и разложение на множители . Подробности можно найти в [1570, 1571, 35, 36].

23.16 Квантовая криптография

Квантовая криптография вводит естественную неопределенность квантового мира. С ее помощью можно создавать линии связи, которые невозможно послушать, не внося помех в передачу . Законы физики надежно защищают такой квантовый канал, даже если подслушивающий может предпринимать любые действия, даже если он имеет доступ к неограниченной вычислительной мощности, даже если P = NP. Шарль Бенне (Charles Bennett), Жиль Брассар (Gilles Brassard), Клод Крепо (Claude Crepeau) и другие расширили эту идею, описав квантовое распределение ключей, квантовое бросание монеты, квантовое вручение бита , квантовую передачу с забыванием и квантовые вычисления с несколькими участниками . Описание их результатов можно найти в [128, 129, 123, 124, 125, 133, 126, 394, 134, 392, 243, 517, 132, 130, 244, 393, 396]. Лучшим обзором по квантовой криптографии является [131]. Другим хорошим нетехническим обзором может служить [1651]. Полную библиографию по квантовой криптографии можно найти в [237].

Эти идеи так и остались бы предметом обсуждения фанатиков криптографии , но Бенне и Брассар разработали действующую модель [127, 121, 122]. Теперь у нас есть эксяерг-шентяльная квантовая криптография.

Итак устройтесь поудобнее, налейте себе чего-нибудь выпить и расслабьтесь. Я попробую объяснить вам, что это такое.

В соответствии с законами квантовой механики частицы на самом деле не находятся в одном месте, а с о п-ределенной вероятностью существуют сразу во многих местах . Однако это так только до тех пор, пока не пр и-ходит ученый и не обмеряет частицу, "оказавшуюся" в данном конкретном месте . Но измерить все параметры частицы (например, координаты и скорость) одновременно невозможно. Если измерить одну из этих двух величин, сам акт измерения уничтожает всякую возможность измерить другую величину. Неопределенность является фундаментальным свойством квантового м ира, и никуда от этого не денешься.

Эту неопределенность можно использовать для генерации секретного ключа . Путешествуя, фотоны колеблются в определенном направлении, вверх-вниз, влево-вправо, или, что более вероятно, под каким-то углом . Обычный солнечный свет неполяризован, фотоны колеблются во всех возможных направлениях . Когда направление колебаний многих фотонов совпадает, они являются поляризованными. Поляризационные фильтры пропускают только те фотоны, которые поляризованы в определенном направлении, а остальные блокируются . Например, горизонтальный поляризационный фильтр пропускает только фотоны с горизонтальной поляризац и-ей. Повернем этот фильтр на 90 градусов , и теперь сквозь него будут проходить только вертикально поляриз о-ванные фотоны.

Пусть у вас есть импульс горизонтально поляризованных фотонов . Если они попробуют пройти через горизонтальный фильтр, то у них у всех прекрасно получится . Если медленно поворачивать фильтр на 90 градусов, количество пропускаемых фотонов будет становиться все меньше и меньше, и наконец ни один фотон не про й-дет через фильтр. Это противоречит здравому смыслу. Кажется, что даже незначительный поворот фильтра должен остановить все фотоны, так как они горизонтально поляризованы . Но в квантовой механике каждая частица с определенной вероятностью может изменить свою поляризацию и проскочить через фильтр . Если угол отклонения фильтра невелик, эта вероятность высока, а если он равен 90 градусам, то вероятность равна нулю . А если угол поворота фильтра равен 45 градусам , вероятность фотона пройти фильтр равна 50 процентам .

Поляризацию можно измерить в любой системе координат: двух направлениях, расходящихся под прямым углом. Примерами систем координат являются прямоугольная - горизонтальное и вертикальное направления - и


диагональная - левая и правая диагонали . Если импульс фотонов поляризован в заданной системе координат, то при измерении в той же системе координат вы узнаете поляризацию . При измерении в неправильной системе координат, вы получите случайный результат. Мы собираемся использовать это свойство для генерации секре т-ного ключа:

(1)Алиса посылает Бобу последовательность фотонных импульсов. Каждый из импульсов случайным образом поляризован в одном из четырех направлений: горизонтальном, вертикальном, лево- и праводиаг о-нальном.

Например, Алиса посылает Бобу:

I I / - \ - I - /

(2)У Боба есть детектор поляризации. Он может настроить свой детектор на измерение прямоугольной или диагональной поляризации. Одновременно мерить и ту, и другую у него не получится, ему не позволит квантовая механика. Измерение одной поляризации не даст измерить другую . Итак, он устанавливает свои детекторы произвольным образом :

X + + X X X + X + +

Теперь, если Боб правильно настроит свой детектор, он зарегистрирует правильную поляризацию. Если он настроит детектор на измерение прямоугольной поляризации, и импульс будет поляризован прямоугольно , он узнает, какую поляризацию фотонов выбрала Алиса. Если он настроит детектор на измерение диаг о-нальной поляризации, а импульс будет поляризован прямоугольно, то результат измерения будет случа й-ным. Боб не сможет определить разницу. В приведенном примере он может получить следующий резул ь-тат:

/ I-\/ \-/-I

(3)Боб сообщает Алисе по незащищенному каналу, какие настройки он использовал .

(4)Алиса сообщает Бобу, какие настройки были правильными . В нашем примере детектор был правильно установлен для импульсов 2, 6, 7 и 9.

(5)Алиса и Боб оставляют только правильно измеренные поляризации. В нашем примере они оставляют:

* I * * * \ * *

С помощью заранее приготовленного кода Алиса и Боб преобразуют в биты эти результаты измерений поляризации. Например, горизонтальная и леводиагональная могут означать единицу, а вертикальная и праводиагональная - ноль. В нашем примере они оба получат:

0 0 1 1

Итак, Алиса и Боб получили четыре бита. С помощью этой системы они могут генерировать столько битов, сколько им нужно. В среднем Боб правильно угадывает в 50 процентах случаев , поэтому для генерации n битов Алисе придется послать 2n фотонных импульсов. Они могут использовать эти биты как секретный ключ си м-метричного алгоритма или обеспечить абсолютную безопасность, получив достаточно битов для использования в качестве одноразового блокнота.

Замечательным является то, что Ева не сможет подслушать. Как и Бобу, ей нужно угадать тип измеряемой поляризации, и, как и у Боба, половина ее догадок будет неправильной . Так как неправильные измерения изм е-няют поляризацию фотонов, то при подслушивании она неминуемо вносит ошибки в передачу. Если это так, Алиса и Боб получат различные битовые последовательности . Итак, Алиса и Боб заканчивают протокол подобными действиями:

(6) Алиса и Боб сравнивают несколько битов своих строк . По наличию расхождений они узнают о подсл ушивании. Если строки не отличаются, то они отбрасывают использованные для сравнения биты и и с-пользуют оставшиеся.

Улучшения этого протокола позволяют Алисе и Боб использовать свои биты даже в присутствии Евы [133, 134, 192]. Они могут сравнивать только четность битовых подмножеств. Тогда, если не обнаружено расхожд е-ний, им придется отбросить только один бит подмножества. Это обнаруживает подслушивание с вероятностью 50 процентов, но если они сверят таким образом n различных битовых подмножеств, вероятность Евы подсл у-шать и остаться незамеченной будет равна 1/2 n.

В квантовом мире не бывает пассивного подслушивания. Если Ева попытается раскрыть все биты, она об я-зательно разрушит канал связи.

Бенне и Брассар построили работающую модель квантового распределения ключей и обменялись безопа с-ными битами на оптической скамье. Последнее, что я слышал, было сообщение о том, что в British Telecom по-


сылали биты по 10-километровому оптоволокну [276, 1245, 1533]. Они считают, что достижимо и расстояние в 50 километров. Это поражает воображение.



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15] [стр.16] [стр.17] [стр.18] [стр.19] [стр.20] [стр.21] [стр.22] [стр.23] [стр.24] [стр.25] [стр.26] [стр.27] [стр.28] [стр.29] [стр.30] [стр.31] [стр.32] [стр.33] [стр.34] [стр.35] [стр.36] [стр.37] [стр.38] [стр.39] [стр.40] [стр.41] [стр.42] [стр.43] [стр.44] [стр.45] [стр.46] [стр.47] [стр.48] [стр.49] [стр.50] [стр.51] [стр.52] [стр.53] [стр.54] [стр.55] [стр.56] [стр.57] [стр.58] [стр.59] [стр.60] [стр.61] [стр.62] [стр.63] [стр.64] [стр.65] [стр.66] [стр.67] [стр.68] [стр.69] [стр.70] [стр.71] [стр.72] [стр.73] [стр.74] [стр.75] [стр.76] [стр.77] [стр.78] [стр.79] [стр.80] [стр.81] [стр.82] [стр.83] [стр.84] [стр.85] [стр.86] [стр.87] [стр.88] [стр.89] [стр.90] [стр.91] [стр.92] [стр.93] [стр.94] [стр.95] [стр.96] [стр.97] [стр.98] [стр.99] [стр.100] [стр.101] [стр.102] [стр.103] [стр.104] [стр.105] [стр.106] [стр.107] [стр.108] [стр.109] [стр.110] [стр.111] [стр.112] [стр.113] [стр.114] [стр.115] [стр.116] [стр.117] [стр.118] [стр.119] [стр.120] [стр.121] [стр.122] [стр.123] [стр.124] [стр.125] [стр.126] [стр.127] [стр.128] [стр.129] [стр.130] [стр.131] [стр.132] [стр.133] [стр.134] [стр.135] [стр.136] [стр.137] [стр.138] [стр.139] [стр.140] [стр.141] [стр.142] [стр.143] [стр.144] [стр.145] [стр.146] [стр.147] [стр.148] [стр.149] [стр.150] [стр.151] [стр.152] [стр.153] [стр.154] [стр.155] [стр.156] [стр.157] [стр.158] [стр.159] [стр.160] [стр.161] [стр.162] [стр.163] [стр.164] [стр.165] [стр.166] [стр.167] [стр.168] [стр.169] [стр.170] [стр.171] [стр.172] [стр.173] [стр.174] [стр.175] [стр.176] [стр.177] [стр.178] [стр.179] [стр.180] [стр.181] [стр.182] [стр.183] [стр.184] [стр.185] [стр.186] [стр.187] [стр.188] [стр.189] [стр.190] [стр.191] [стр.192] [стр.193] [стр.194] [стр.195] [стр.196] [стр.197] [стр.198] [стр.199] [стр.200] [стр.201] [стр.202] [стр.203]