Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[46]

векторов. Этот оптический образ вырабатывается оптической матрицей внутренних связей и прикладывается к массиву оптических нейронов, замыкая контур обратной связи.

Оптическая матрица внутренних связей

Рис. 9.8. Массив оптических нейронов

Обсуждение оптической матрицы внутренних связей здесь сильно упрощено; детали реализации включают сложную оптическую технику функционирования, выходящую за рамки данной работы. Интересующиеся читатели отсылаются к работам [12] и [5].

Мнтенсивнрсть бШРднргр сигнала

Рис. 9.9. Сигмоидальная функция активации


ЗАКЛЮЧЕНИЕ

Оптические нейронные сети предлагают огромные выгоды с точки зрения скорости и плотности внутренних связей. Они могут быть использованы (в той или иной форме) для реализации сетей фактически с любой архитектурой.

В настоящее время ограничения электронно-оптических устройств создают множество серьезных проблем, которые должны быть решены прежде, чем оптические нейронные сети получат широкое применение. Однако учитывая, что большое количество превосходных исследователей работает над этой проблемой, а также большую поддержку со стороны военных, можно надеяться на быстрый прогресс в этой области.

Литература

1.Abu-Mostafa Y. S., Psaltis D. 1987. Optical neural computers. Scientific American, March, pp. 88-95.

2.Anderson D. Z. 1985. Coherent optical Eigenstate memory. Proceeding of the Optical Society of America 1985 Annual Meeting.

3.Athale R. A., Friedlander С. В., Kushner C. B. 1986. Attentive associative architectures and their implications to optical computing. Proceedings of the Society of Photo-Optical Instrumentation Engineering 625:179-88

4.Dunning G. J., Marom E., Owechko Y., Soffer B. N. 1985. All-optical associative holografic memory with feedback using phase conjugate mirrors. Proceedings of the Society of Photo-Optical Instrumentation Engineering 625:179-188.

5.Fainman N. H., Klancnik E., Lee S. H. 1968. Optical Engineering 25:228.

6.Farhat N. H., Psaltis D., Prata A., Paek E. 1985. Optical implementation of the Hopfield model. Applied optics 24:1469-75

7.Fisher A. D., Giles C. L, Lee J. N. 1985. An adaptive optical computing element. Proceedings of the Optical Society of America Topical Meeting.

8.Jannson Т., Karagaleff C., Stoll K. M. 1986. Photo-refractive LiNbO3 as a storage mediume for high-den-sity optical neural networks. 1986 Optical Society of America Annual Meeting.

9.Kosko B. 1987. Optical bidirectional associative memories. Proceedings of the Society of Photo-Optical Instrumentation Engineering: Image Understanding and the Man-Machine Interface 758:11-18.

10.Mead С. 1988. Paper presented during plenary session. IEEE Second International Conference on Neural Networks. San Diego, June.

11.Psaltis D., Wagner K., Brady D. 1987 Learning in optical neural computers. In Proceedings of IEEE First International Conference on Neural Networks, edc. M. Caudill and C. Butler. San Diego, CA:SOS Printing.

12.Stoll H. M., Lee L. S. 1988. Continuous time optical neural networks. Proceedings of IEEE International Conference on Neural Networks. San Diego, CA:SOS Printing.


Глава 10.

Когнитрон и неокогнитрон

Люди решают сложные задачи распознавания образов с обескураживающей легкостью. Двухлетний ребенок без видимых усилий различает тысячи лиц и других объектов, составляющих его окружение, несмотря на изменение расстояния, поворота, перспективы и освещения.

Может показаться, что изучение этих врожденных способностей должно сделать простой задачу разработки компьютера, повторяющего способности человека к распознаванию. Ничто не может быть более далеким от истины. Сходство и различия образов, являющиеся очевидными для человека, пока ставят в тупик даже наиболее сложные компьютерные системы распознавания. Таким образом, бесчисленное количество важных приложений, в которых компьютеры могут заменить людей в опасных, скучных или неприятных работах, остаются за пределами их текущих возможностей.

Компьютерное распознавание образов является больше искусством; наука ограничена наличием нескольких методик, имеющих относительно небольшое использование на практике. Инженер, конструирующий типовую систему распознавания образов, обычно начинает с распознавания печатного текста. Эти методы часто являются неадекватными задаче, и старания разработчиков быстро сводятся к разработке алгоритмов, узко специфичных для данной задачи.

Обычно целью конструирования систем распознавания образов является оптимизация ее функционирования над выборочным набором образов. Очень часто разработчик завершает эту задачу нахождением нового, приблизительно похожего образа, что приводит к неудачному завершению алгоритмов. Этот процесс может продолжаться неопределенно долго, никогда не приводя к устойчивому решению, достаточному для повторения процесса восприятия человека, оценивающего качество функционирования системы.

К счастью, мы имеем существующее доказательство того, что задача может быть решена: это система восприятия человека. Учитывая ограниченность успехов, достигнутых в результате стремления к собственным изобретениям, кажется вполне логичным вернуться к биологическим моделям и попытаться определить, каким образом они функционируют так хорошо. Очевидно, что это трудно сделать по нескольким причинам. Во-первых, сверхвысокая сложность человеческого мозга затрудняет понимание принципов его функционирования. Трудно понять общие принципы функционирования и взаимодействия его приблизительно 1011 нейронов и 1014 синаптических связей. Кроме того, существует множество проблем при



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15] [стр.16] [стр.17] [стр.18] [стр.19] [стр.20] [стр.21] [стр.22] [стр.23] [стр.24] [стр.25] [стр.26] [стр.27] [стр.28] [стр.29] [стр.30] [стр.31] [стр.32] [стр.33] [стр.34] [стр.35] [стр.36] [стр.37] [стр.38] [стр.39] [стр.40] [стр.41] [стр.42] [стр.43] [стр.44] [стр.45] [стр.46] [стр.47] [стр.48] [стр.49] [стр.50] [стр.51] [стр.52] [стр.53] [стр.54] [стр.55] [стр.56] [стр.57] [стр.58] [стр.59] [стр.60]