Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[14]

Для решения вопроса о существовании автоколебаний в соответствии с нормированной логарифмической амплитудной характеристикой с обратным знаком нелинейного элемента и передаточной функцией линейной части

системы

s(T1s+ 1)(T2s+1)

на рис. 2.13 построены логарифмические характеристики Ьлч(со), -Ьэ(ц) и

Улч(ю).

Частота периодического решения ю0 = 4.3 с-1 определяется в точке пересечения фазовой характеристики улч(ю) и линии -1800. Амплитуды периодических решений U! = 29 и j,2 = 1.08 находятся по характеристикам Ьлч(со) и -Ьэ(ц). Периодическое решение с малой амплитудой j,2 неустойчиво, а периодическое решение с большой амплитудой 1 устойчиво.

Таким образом, в исследуемой релейной системе существует автоколебательный режим с частотой с 0 = 4.3 c-1 и амплитудой a0 = bx 1 = = 58 В.

Имея фазовый портрет системы, определяют по нему особые точки и траектории, исследуют устойчивость системы и оценивают качество процесса управления.

Метод фазовой плоскости используется для исследования систем второго порядка и заключается в построении фазовых портретов на плоскости. Для этого из уравнений состояния исключается время и определяются уравнения фазовых кривых. Задача становится достаточно простой, если рассматривается система с кусочно-линейной характеристикой нелинейного элемента. В этом случае в разных областях фазовой плоскости система описывается линейными уравнениями, в соответствии с которыми строятся фазовые траектории, которые в дальнейшем "сшиваются" по линиям переключения, определяемым видом нелинейной характеристики.

При исследовании нелинейных систем высокого порядка их аппроксимируют системами второго порядка с эквивалентным запаздыванием.

Для изображения процессов на фазовой плоскости нелинейное уравнение, описывающее систему, заменяют эквивалентными уравнениями первого порядка вида

2.5. Методы фазового пространства

Методы фазового пространства относятся к наиболее ранним точным аналитическим методам теории нелинейных систем. К ним относится метод фазовой плоскости и метод точечных отображений или преобразований [1].

Фазовым пространством называется пространство, по осям координат которого отложены переменные, характеризующие состояние динамической системы. Если движение системы описывается дифференциальным уравнением n-го порядка, то состояние этой системы в любой момент времени можно характеризовать некоторой точкой n-мерного фазового пространства, по осям которого отложены одна из координат системы и (n-1) ее производных. Точка, характеризующая состояние системы, называется изображающей точкой.

При движении системы изображающая точка описывает в фазовом пространстве некоторую кривую, называемую фазовой траекторией. Каждому определенному переходному процессу в фазовом пространстве соответствует определенная фазовая траектория. Начальное положение изображающей точки определяется начальными условиями. В установившемся равновесном состоянии системы все производные рассматриваемой переменной равны нулю; соответствующие этому точки фазового пространства находятся в покое и называются особыми точками. Совокупность фазовых траекторий для всевозможных начальных отклонений называется фазовым портретом системы.

f &у);

где x, у - координата системы и ее первая производная; f(x, у) - нелинейная функция. Разделив первое из уравнений (2.39) на второе, получим дифференциальное уравнение, из которого исключено время t:

Решение данного уравнения

у = Fx)

определяет уравнение фазовой траектории, которая графически изображается на фазовой плоскости (x, у). Каждой совокупности начальных условий (x0, у0) соответствует свое решение и своя фазовая траектория. Семейство фазовых траекторий характеризует все возможные виды переходных процессов в данной системе управления при любых начальных условиях и образует ее фазовый портрет.

Основные свойства фазовых траекторий вытекают из выражения (2.40): 1) если f(x, у) определена и непрерывна в некоторой области и имеет не-


прерывные частные производные по своим аргументам, то через всякую точку фазовой плоскости, за исключением особых точек, проходит единственная фазовая траектория. Это означает, что фазовые траектории не пересекаются между собой;

2)так как при У>0 производная dx/dt>0 и x только возрастает, то в верхней фазовой полуплоскости при возрастании времени t изображающая точка движется слева направо. Соответственно в нижней полуплоскости движение происходит справа налево. Направление движения на траекториях показывают стрелками;

3)в точках, где у=0, f(x, у)0 (неособых точках на оси абсцисс), фазовые траектории пересекают ось под прямым углом.

В тех случаях, когда решение уравнения (2.40) аналитическими методами затруднительно или невыполнимо, фазовые траектории можно построить приблизительным графическим методом изоклин [2, 5, 10].

Изоклины представляют собой геометрическое место всех точек фазовой плоскости, для которых наклон фазовой траектории равен постоянному значению съ то есть dy/dx=ci . Тогда вместо (2.40) можно написать уравнение

f &у) у

из которого получается уравнение изоклины

у = cp(x, ci ).

Задавая различные значения с наклона касательных к фазовым траекториям, пересекающим эти изоклины, строят семейство изоклин, которые используются для построения фазовых траекторий (рис. 2.14). Фазовая траектория в точке пересечения с изоклиной имеет угол наклона arctg с . В качестве примера на рис. 2.14 на изоклинах отмечены наклоны касательных к пересекающим их траекториям направляющими стрелками и построена фазовая траектория, исходящая из точки А.

Рис. 2.14. Построение фазовой траектории методом изоклин

Рассмотрим фазовые траектории линейной системы второго порядка, переходный процесс в которой описывается уравнением

d2x dx

-- + a1 - + a2x = 0 .

dt2 1 dt 2

Введя обозначение для скорости изменения регулируемой величины у = dx/dt, получим эквивалентные уравнения первого порядка

откуда, исключив время t, находим дифференциальное уравнение для определения фазовых траекторий

Решение у = -F(x) этого уравнения определяет уравнения фазовых траекторий на фазовой плоскости (x, у). Возможные виды фазовых портретов системы, соответствующие корням характеристического уравнения p2 + a1p + a2 = 0, приведены в таблице.

Т а б л и ц а

Виды фазовых портретов для линейных систем второго порядка

Корни характеристического уравнения

1. a1=0, a2>0

Переходный процесс

Фазовая траектория

особая точка центр


2. a12>4a2, a1>0, a2>0 ImA

3. a2<0 ImA

4. a12<4a2, a1<0, a2>0 ImA

5. a12<4a2, a1>0, a2>0 ImA

6. a12>4a2, a1<0, a2>0 ImA

f\ / \;

- особая точка -устойчивый узел

Продолжение табл.

особая точка седло

- особая точка -неустойчивый фокус

особая точка -устойчивый фокус

-особая точка -неустойчивый узел

Вид и расположение фазовых траекторий, а также направление движения по ним изображающей точки дают возможность судить о характере движения системы и его устойчивости при различных начальных отклонениях. Особые точки и их характер определяют состояние равновесия исходной системы.

Реальные автоматические системы можно считать линейными в предположении малости отклонений переменных от их установившихся значений. За пределами указанной области картина фазовых траекторий может стать качественно иной. В частности, если по линейной теории система неустойчивая и процесс расходится, то может оказаться, что из-за фактической нелинейности характеристик он не будет расходящимся неограниченно. Картина фазовых траекторий для такой системы изображена на рис. 2.15,а. Здесь вблизи начала координат получаются спирали, как в неустойчивой линейной системе, но далее они приближаются асимптотически к замкнутому контуру ограниченных размеров. К нему же приближаются и все спирали, находящиеся вне контура. Такого рода замкнутый контур представляет собой особый вид линий на фазовой плоскости и называется устойчивым предельным циклом. Устойчивый предельный цикл соответствует автоколебаниям системы. Размеры предельного цикла представляют амплитуды колебаний самой величины x и скорости ее изменения у. Для определения периода автоколебаний необходимо решить уравнение системы во времени.

Рис. 2.15. Фазовые траектории нелинейных систем: а - устойчивый предельный цикл; б - неустойчивый предельный цикл; в - фазовый портрет системы с сепаратрисами

Замкнутые фазовые траектории на фазовой плоскости называются предельными циклами, которые могут быть как устойчивыми (рис. 2.15,а), так и неустойчивыми (рис. 2.15,б). К этим предельным циклам стремятся изображающие точки при различных начальных отклонениях по различным фазовым траекториям.

В различных частях фазовой плоскости фазовые траектории нелинейной системы могут быть различными (рис. 2.15,в). Линии, разделяющие фазовую плоскость на участки с различными фазовыми траекториями, называются



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15] [стр.16] [стр.17] [стр.18] [стр.19]