Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[0]

Министерство образования Российской Федерации

ВОЛОГОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

В.Н.Тюкин

ТЕОРИЯ УПРАВЛЕНИЯ

Часть 2

ОСОБЫЕ ЛИНЕЙНЫЕ И НЕЛИНЕЙНЫЕ СИСТЕМЫ

Конспект лекций

Р е ц е н з е н т ы:

кафедра прикладной математики Вологодского государственного педагогического университета (зав. кафедрой д-р физ.- мат. наук, проф. А.И. Зейфман); д-р техн. наук, проф. И.В. Мирошник (Санкт-Петербургский государственный институт точной механики и оптики (технический университет)

Тюкин В.Н.

Т98 Теория управления: Часть 2. Особые линейные и нелинейные системы: Конспект лекций. - Вологда: ВоГТУ, 2000. - 128 с.: ил. ISBN 5-87851-123-1

Соответствует программе семестрового курса лекций по теории дискретных и нелинейных систем управления. Содержит сведения о математическом аппарате описания систем управления и их моделях. Исследуется устойчивость, точность; даются оценки качества управления и методы синтеза корректирующих устройств. Рассматриваются случайные процессы в системах управления.

Конспект лекций предназначен для студентов высших учебных заведений, обучающихся по направлению 550200 - автоматизация и управление и специальности 210100 - управление и информатика в технических системах.

Утверждено редакционно-издательским советом ВоГТУ учебного пособия.

в качестве

УДК 681.5 ББК 32.96

ISBN 5-87851-123-1

© Вологодский государственный технический университет, 2000 © Тюкин В.Н., 2000

Посвящается

Вологда20-летию кафедры автоматизации

2000технологических процессов и производств

УДК 681.5 ББК 32.96 Т 98


ПРЕДИСЛОВИЕ

Данное учебное пособие относится ко второй части курса Теория управления и соответствует программе семестрового цикла лекций по теории дискретных и нелинейной систем автоматического управления и регулирования. Вопросы теории линейных систем рассмотрены в первой части учебного пособия.

Предполагается, что читатель данного учебного пособия знаком с материалом его первой части.

Каждый раздел, помимо теоретических сведений, включает основные понятия, ссылки на литературу, примеры и вопросы для самопроверки.

В дальнейшем предполагается на основе обеих частей создать электронный учебник по теории управления, куда, кроме лекционного курса, будут включены материалы для практических занятий, лабораторного практикума и курсового проектирования, а также система контроля.

Конспект лекций предназначен для студентов очной и заочной форм обучения специальности 210100 - управление и информатика в технических системах. Пособие может быть полезно студентам других специальностей, инженерно-техническим работникам и преподавателям, а также всем интересующимся в области управления. Можно надеяться, что изучившие это учебное пособие смогут самостоятельно, используя литературные источники, продолжить работу в интересующих их областях.

содержание глоссарий 1. ДИСКРЕТНЫЕ СИСТЕМЫ АВТОМАТИЧЕСКОГО

УПРАВЛЕНИЯ

вопросы

1.1. Общие сведения

Дискретные системы - системы, в состав которых, помимо типовых динамических звеньев, входят одно или несколько звеньев, производящих квантование непрерывного сигнала в дискретный. Это или импульсный, или релейный элемент, или цифровое устройство.

К дискретным системам относятся импульсные, релейные и цифровые. В импульсных системах производится квантование сигнала по времени, в релейных - по уровню, в цифровых - по времени и по уровню.

Импульсная система состоит из импульсных элементов (одного или нескольких) и непрерывных частей, содержащих типовые динамическое звенья. Импульсные элементы, производящие квантование (прерывание) сигнала по времени, позволяют получать весьма большие коэффициенты усиления по мощности. Кроме того, при импульсном режиме уменьшается расход по-

требляемой энергии системы. Примерами импульсных систем могут служить системы радио и оптической локации, системы с частотными датчиками и др.

Релейные системы автоматического управления можно отнести, как и импульсные, к системам прерывистого действия, но их существенное отличие от импульсных состоит в том, что релейные системы по своему принципу являются нелинейными системами. В релейных системах моменты времени, в которые происходит замыкание и размыкание системы, заранее неизвестны; они определяются внутренними свойствами самой системы. Этим обусловливаются основные особенности динамики процессов регулирования в релейных системах. Благодаря простоте реализации и приемлемому качеству работы релейные системы получили широкое распространение в бытовой технике, например, системы регулирования температуры в холодильниках или нагрева электрического утюга и др.

К цифровым системам относятся системы автоматического управления и регулирования, в замкнутый контур которых включается цифровое вычислительное устройство, что позволяет реализовать сложные алгоритмы управления. Включение цифрового вычислительного устройства в контур системы управления сопряжено с преобразованием непрерывных величин в дискретные на входе и с обратным преобразованием на выходе. При достаточно высокой тактовой частоте работы вычислительного устройства (по сравнению с инерционностью системы) во многих случаях можно производить расчет цифровой системы в целом как непрерывной, а достаточно большое числе разрядов (8--16) преобразователей непрерывной величины в дискретную и дискретной в непрерывную позволяет во многих случаях пренебрегать нелинейностью операции квантования сигнала по уровню. В общем случае цифровая система автоматического управления является нелинейной дискретной системой. Примерами цифровых систем служат системы, содержащие в своем составе компьютеры, разнообразные микропроцессорные системы управления и т.д.

Дискретные системы имеют большое значение в современной технике.

1.2. Структура и классификация импульсных систем

Характерная особенность импульсных систем заключается в том, что по крайней мере одна из координат (переменных) в них подвергается квантованию (прерыванию) по времени [18]. Эти квантованные по времени величины при помощи импульсной модуляции преобразуются в последовательность импульсов, которые воздействуют на непрерывную часть системы. Процесс квантования и импульсной модуляции осуществляется импульсным элементом.


Таким образом, импульсная система состоит из импульсного элемента (ИЭ) и непрерывной части (НЧ), составленной из типовых динамических звеньев (рис. 1.1).

-►

Рис. 1.1. Функциональная схема импульсной системы: ИЭ - импульсный элемент; НЧ - непрерывная часть

В импульсной системе импульсный элемент преобразует непрерывно изменяющуюся величину в последовательность модулированных импульсов (рис.

x"1

имп

Рис. 1.2.Временные диаграммы изменения сигналов на входе x и выходе x импульсного элемента

Процесс импульсной модуляции состоит в изменении по определенному временному закону какого-либо параметра периодически повторяющихся импульсов. Основными параметрами импульсной последовательности (рис. 1.2) являются:

1)высота или амплитуда импульса А;

2)длительность или ширина импульса Тимп ;

3)период повторения (дискретности) или период квантования импульсов Т. Расстояние между импульсами определяется их временным положением,

т.е. частотой повторения (дискретности) или частотой квантования ю0 = 2п/Т. Величина, определяющая закон модуляции, называется модулирующей величиной.

В зависимости от того, какой из параметров последовательности импульсов изменяется по закону изменения модулирующей величины, различают следующие виды импульсной модуляции:

1)амплитудно-импульсную модуляцию - АИМ (амплитуда импульса пропорциональна входному сигналу: A = f(x) при T = const, Тимп = const);

2)широтно-импульсную модуляцию - ШИМ (длительность импульса пропорциональна входному сигналу: Тимп = f(x) при A = const, T = const);

3)временную импульсную модуляцию - ВИМ, включающую в себя:

а)фазо-импульсную модуляцию - ФИМ (фаза, т.е. временной сдвиг импульса относительно начала периода дискретности T, пропорциональна входному сигналу: ср = f(x) при A = const, T = const, Тимп = const);

б)частотно-импульсную модуляцию - ЧИМ (частота дискретности пропорциональна входному сигналу: ю0 = f(x) при A = const, Тимп = const).

Кроме того, различают два рода импульсной модуляции.

Если параметры последовательности импульсов изменяются в зависимости от значений модулирующей величины в фиксированные равноотстоящие друг от друга моменты времени, то такой вид модуляции называется импульсной модуляцией первого рода - ИМ I.

Если же параметры последовательности импульсов изменяются в соответствии с текущим значением модулирующей величины, то такой вид модуляции называется импульсной модуляцией второго рода - ИМ II.

Импульсный элемент производит периодическое замыкание системы на время длительности импульса Тимп ; в оставшуюся часть периода дискретности импульсная система остается разомкнутой.

Основными параметрами импульсного элемента являются коэффициент передачи kII, период повторения Т ( или частота повторения ю0 = 2п/Т), длительность Тимп = уТ (или скважность у, 0 < у < 1) и форма выходных импульсов w(t). В зависимости от вида и рода импульсной модуляции импульсные элементы подразделяются на амплитудные, широтные и временные импульсные элементы первого и второго рода.

В зависимости от вида и рода импульсного элемента импульсные системы подразделяются на три типа:

1)амплитудные импульсные системы - АИС,

2)широтные импульсные системы - ШИС,

3)временные импульсные системы - ВИС первого и второго рода.

В зависимости от того, соблюдается или не соблюдается принцип суперпозиции, т.е. равна или не равна реакция импульсной системы на сумму воздействий сумме реакций на каждое из воздействий порознь, импульсные системы подразделяются на линейные и нелинейные.



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15] [стр.16] [стр.17] [стр.18] [стр.19]