Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[48]

Рассмотрим задачу расчета траектории точки переменной массы, движущегося под действием реактивной тяги. Движение точки в этом случае описывается уравнением Мещерского:

A = (U/M)*(dM/dt) + F/M

Где A - ускорение точки, M - масса точки.

U - скорость реактивной струи относительно точки,

F - результирующая внешних сил, действующих на точку,

Учитывая, что F = kz*M/r2 - сила притяжения направлена к центру Земли, а P = U*(dM/dt) - реактивная сила двигателя (тяга) направлена по касательной к траектории движения, определяем проекции ускорения на оси координат:

Ax = P*Vx/(M*V) - kz*x/(r3);Ay = P*Vy/(M*V) - kz*y/(r3);

Где V = V(Vx2 + Vy2 ) - скорость точки,

r = V( x2 + y2 ) - расстояние до центра Земли, Vx , Vy - проекции скорости точки на оси координат, x, y - координаты точки.

Полагая расход топлива z = dM/dt постоянным, массу точки можно определить по формуле: M = M0 - z*t; при t < Tk , где M0 - начальная масса точки, Tk - время работы двигателя.

Практическое задание N 2. 25

1.Построить десять траекторий полета баллистической ракеты, рассчитанных разностным моделированием. Начальная скорость =1,м/с, тяга двигателя P=2. 5Е6,н, стартовая масса M0 = 1. 5Е5, кг, расход топлива z= 700, кг/с, время работы двигателя Tk = 200, с.

2.Построить траектории полета двухступенчатой баллистической ракеты, рассчитанные разностным моделированием. Начальная скорость V0 = 1,м/с, стартовая масса M0 = 3Е5, кг, для первой ступени: тяга P1 =5Е6, н, расход топлива z1= 1700, кг/с, время работы двигателя Tk1 = 130, с. Для второй ступени: тяга P2 = 1. 1 Е6, н, расход топлива z2= 300, кг/с, время работы двигателя Tk2 = 230, с.

Примечание к п. 1, 2: сопротивление воздуха и вращение Земли не учитывать. Угол запуска ракеты к горизонту = 900 -N*0. 0020, где N= 1, 2, 3, 10. Во время работы двигателя dt=0. 05, c, затем dt=0. 5, c.

3.Построить траекторию полета спутника Земли при включении двигателя, рассчитанную разностным моделированием. Начальные условия на высоте H=400000 м принять следующие: скорость V0=W1 и направлена по касательной к окружности, M0=11000, кг, тяга двигателя P=4Е5, н, расход топлива z=100, кг/с, время работы двигателя Tk = 70, с. Рассчитать скорость спутника при работе двигателя по формуле Циолковского: V = V0 +

U*ln(M0/M) , где U = P/z.

Через каждые 10 секунд выводить на экран время полета спутника и скорость.

Рассмотрим задачу расчета траектории точки, прикрепленной к упругой нити, и

движущейся с начальной скоростью "V1" под углом "fi" к оси "x" из точки с координатами (x1, y1), без учета сил сопротивления воздуха. Эта задача моделирует известную игрушку -мяч, привязанный на резинке.

Пусть точка имеет массу "M", длина нити "L". Полагаем, что нить невесома и абсолютно упруга. Коэффициент упругости "Kn".


Оси координат проведем через точку закрепления нити вверх и влево. Расчетную область ограничим: X min = Y min = -Lm, X max = Y max = Lm,

где Lm = abs(Vi* V(M/Kn)) + V(x12 + y12) + L + 2*M*g/Kn.

Период свободных колебаний груза, подвешенного на упругой нити:

T = 6, 28* V(M/Kn). Примем dt = T/300.

Проекции ускорения определяются как дискретная функция расстояния " r " от начала координат до точки закрепления нити: если r <= L, то ускорение от сил упругости равно нулю, в остальных случаях:

Ax = -x*Ky*dr/(r*M);

Ay = -y*Ky*dr/(r*M) - 9.81; где dr = (r-L) > 0.

Проекцию ускорения на ось "Х" от сил упругости, запишем в виде функции: FUNCTION FA(x, r, L, Kn, M: double): double;

begin if (r-L)>0 then FA:= -x*Kn*(r-L)/(r*M) else FA:= 0 end;

Аналогичная функция составляется для проекции ускорения на ось "У". Методика расчета соответствует приведенной для движения спутника в поле тяготения планеты.

Практическое задание N 2. 26

1.Построить траекторию движения мяча, подвешенного на упругой нити в вязкой среде, рассчитанную разностным моделированием. Сопротивление среды пропорционально скорости движения мяча: kc=0. 01, с-1. Нить закреплена в центре квадрата со стороной 2*Lm, длина нити L=1, м, коэффициент упругости Kn=5, н/м. Масса мяча M=0. 2, кг. Мяч начинает движение из точки с координатами x1=-0. 5*L, y1=0, со скоростью V1=10, м/с, под углом 450.

2.Построить траекторию движения мяча, подвешенного на упругой нити в квадратной коробке, рассчитанную разностным моделированием, с учетом уменьшения нормальной составляющей скорости на 20% при отражении мяча от стенки. Сопротивление среды пропорционально скорости движения мяча: kc=0. 05, с-1. Нить длиной L=1, м, закреплена в центре квадрата со стороной a=1. 5*L. Коэффициент упругости Kn=5, н/м, масса мяча M=0. 1, кг. Мяч начинает движение из точки с координатами x1=-L, y1=0, со скоростью V1x=1, м/с, V1y=5, м/с.

2. 4. Моделирование многовариантных задач с использованием графов


Рассмотрим "классический" пример многовариантной задачи. Пусть пункты A и B связаны между собой дорогами, могущими проходить также через пункты 1, 2, 3,..., N. В общем случае каждый пункт связан дорогами со всеми остальными. В частном случае некоторые связи (дороги) отсутствуют. Схематически эти пункты и связи можно изобразить в виде графа.

Графом называется совокупность узлов (пункты A, B, 1, 2, . . . , N) и связывающих их ребер (дорог). Маршрутом движения называется последовательность связанных ребрами узлов. В дальнейшем будем рассматривать те маршруты движения, которые всегда начинаются из пункта A и заканчиваются в пункте B. Причем пункты A и B на маршруте повторяться не могут. Например : А-1-4-В.

Ставится задача составить маршруты при заданных ограничениях (фильтрах), либо найти оптимальный по некоторым параметрам маршрут и т. д. Например, известна стоимость проезда по каждой из дорог. Необходимо найти маршрут с наименьшей стоимостью проезда, либо найти все маршруты со стоимостью не превышающей определенную величину и т.

Пусть узел A имеет номер "0", а узел B - номер "N+1". Рассмотрим общий случай: каждый пункт связан со всеми остальными. Обозначим M - число промежуточных узлов на маршруте.

При М = 0 маршрут может проходить только из узла "0" в узел "N+ 1".

При М = 1 маршрут проходит через один из узлов: j1= 1, либо j1= 2, либо j1= N.

При М = 2 маршрут проходит через два узла, причем первый из них может иметь номер: j1=1, либоj1=2, ... либоj1=N, а второй - номер: j2=1, либоj2=2, ... либоj2=N, т. е. возможно N2 маршрутов. Графически все маршруты можно представить в виде:

1 . . . j1

Таким образом, число маршрутов равно NM и время перебора маршрутов при больших значениях N и M очень быстро растет.

При постановке задачи нахождения маршрутов указывается значение M - наименьшее число узлов на маршруте, M1 - наибольшее число узлов на маршруте. Причем 1<=M<=M1. Например, пусть на графе имеется три узла N=3 и необходимо составить маршруты, проходящие через два узла, т. е. M=2, M1=2. Тогда в общем случае имеются маршруты:

0-1-1-4; 0-2-1-4; 0-3-1-4; > Д)4 „ 0-1-2-4; 0-2-2-4; 0-3-2-4; (Г)-(Г)--£3)

0-1-3-4; 0-2-3-4; 0-3-3-4;

односторонняя связь

двусторонняя связь



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15] [стр.16] [стр.17] [стр.18] [стр.19] [стр.20] [стр.21] [стр.22] [стр.23] [стр.24] [стр.25] [стр.26] [стр.27] [стр.28] [стр.29] [стр.30] [стр.31] [стр.32] [стр.33] [стр.34] [стр.35] [стр.36] [стр.37] [стр.38] [стр.39] [стр.40] [стр.41] [стр.42] [стр.43] [стр.44] [стр.45] [стр.46] [стр.47] [стр.48] [стр.49] [стр.50] [стр.51] [стр.52] [стр.53]