Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[44]

t - параметр времени.

Практическое задание N 2. 16

1.Построить траектории движения десяти пловцов, заканчивающих движение со скоростью V2 = V1 / N, где N - номер пловца. Ширина реки H=1000, м, скорость V1=2, м/с, Vp=1, м/с.

2.Построить траектории движения спортсмена, прыгающего вертикально со скакалкой в поезде. Скорость движения поезда прямолинейна и постоянна Vp=20, м/с. Спортсмен отрывается от пола со скоростью V1=5,м/с и до касания движется по закону: Y= V1*t - 0. 5*g*t2. Движения повторяются 10 раз с периодом t = 2*V1/g, где g=9. 81, м/с2.

3.Построить траектории движения шести точек на колесе радиусом R=0. 5, м, катящемся по горизонтальной плоскости с постоянной скоростью V=0. 2, м/с. Траектория точки описывается уравнениями:

X = V*t - R1*sin(fi);Y = -R1*cos(fi);

где R1= R +(N-3)*R/2 - радиус N -ой точки, N=1, . . . , 6; fi= V*t/R, t - время движения 0<=t<=3*(2*Pi*R/V).

Динамика. В задачах динамики рассматривается движение тел под действием сил. Для определения характеристик движения (траектории, скорости и т. д. ) составляются дифференциальные уравнения движения, которые затем интегрируются, а также используются законы сохранения энергии или импульса.

Рассмотрим задачу столкновения двух шаров, движущихся со скоростью V1 и V2. Если центры масс соударяющихся тел находятся на общей нормали, проведенной в точку контакта, то удар называется центральным. Например, удар при столкновении двух шаров. При центральном ударе двух тел с идеально гладкой поверхностью справедлива гипотеза Ньютона: проекция скорости на нормаль к поверхности в точке контакта уменьшается после удара в "k" раз. Коэффициент восстановления "k" характеризует потери энергии на тепло при ударе и зависит от материала тел. Используя также закон сохранения импульса, получаем формулу расчета векторов скорости шаров W1 и W2 после удара:

W1 = V1 + M2*(1+k)/(M1+M2)*(V1*cos(fi1) + V2*cos(fi2))*n1; W2 = V2 + M1*(1+k)/(M1+M2)*(V1*cos(fi1) + V2*cos(fi2))*n2;

Здесь fi1 и fi2 - углы между линией общей нормали и векторами скоростей V1 и V2 в момент удара.

n1 и n2 - векторы единичных нормалей к поверхности шаров в точке контакта. V1 и V2 - модули векторов скоростей V1 и V2.

Рассмотрим случай построения плоской траектории при столкновении шара "1", движущегося со скоростью "V1" с неподвижным шаром "2". В проекциях на оси скорость первого шара равна:

W1x = V1x + M2*(1+k)/(M1+M2)*V1*cos(fi1)*n1x; W1y = V1y + M2*(1+k)/(M1+M2)*V1*cos(fi1)*n1y;

где n1x=cos(-fi1+Pi); n1y=sin(-fi1+Pi);Y


Аналогичный вид имеет формула для W2x и W2y,

причем n2x=cos(-fii); n2y=sin(-fii);

Практическое задание N 2. 17X

1. Пренебрегая размерами шаров построить траектории движения двух шаров до и после столкновения. Первый шар движется по горизонтали со скоростью V1=10, м/с, а второй неподвижен (в центре экрана). Массы шаров равны: M1 = 0. 1, M2 = 0. 1. Угол fi1 менять по зависимости: fi1 = Pi*(5-i)/10, i=1, 2, . . . , 9. Коэффициент восстановления k=0, 55 - для стальных шаров, k=0, 89 - для шаров из слоновой кости.

Многие задачи динамики связаны с расчетом длины пути "L", например, при определении работы сил трения "At":

Kt*N*dL = Kt*N*L;

Здесь Kt - коэффициент трения скольжения, N - нормальная реакция поверхности (полагается постоянной).

Длина дуги плоской линии находится по формуле:

L= j"V((dx/dt)2 + (dy/dt)2)dt; или

(1 + (dy/dx)2)dx;

Здесь t - параметр, при задании вида кривой в параметрической форме.

Практическое задание N 2. 18

1. Определить, длину пути точки, движущейся в горизонтальной плоскости X0Y по траектории:

1)Эллипс y= YL*sin( t ); x= Xl*( 1+ cos( t ))/2; 0<=t<=Pi;

2)Парабола y=4*YL*x*(XL-x)/XL2; 0<=x<=Xl; 0<=y<=YL; 4) Синусоида y=YL*sin(Pi*x/XL); 0<=x<=Xl; 0<=y<=YL;0Xl X Расчет интеграла провести двумя численными методами,

например, с использованием квадратурных формул Гаусса и по формуле Симпсона, для YL=10; XL=15; Построить все траектории движения точки.

2. 2. 2. Оптика и свет

Геометрическая оптика. Задачи оптики связаны с графическими построениями падающих, преломленных и отраженных лучей.


Рассмотрим задачу построения траектории преломленных и отраженных лучей при прохождении границы раздела двух прозрачных сред. Углом падения называют угол, образованный лучом и нормалью к поверхности в точке падения. Согласно закону отражения света угол падения луча равен углу отражения. Углом преломления называют угол, образованный лучом, прошедшим через границу раздела двух сред, и нормалью к поверхности в точке падения. Согласно закону преломления света проходящего из среды с показателем преломления n1 в среду с показателем преломления n2 зависимость между углом падения fi1 и углом преломления fi2 имеет вид:

sin(fi2)/sin(fi1)=n1/n2.

В случае расположения источника в более плотной среде n1>n2, при угле падения луча большем, чем fip=arcsin(n2/n1) происходит полное отражение луча. В случае расположения источника в менее плотной среде n1<n2 существует оптимальный угол падения луча fio=arctg(n1/n2) при котором потери отраженной и поглощенной энергии наименьшие.

Пусть источник света расположен в среде с n1>n2, а граница раздела сред проходит по оси "Х". Алгоритм построения траектории луча следующий:

1)Задаем координаты и угол выхода луча x0, y0, fi1. Вычисляем fip с использованием формулы: arcsin(x)=arctg(x/V(1-x2)).

2)Определяем проекции падающего луча: fx1=abs(y0)*tg(fi1); fy1=abs(y0); и строим вектор из т. (x0, y0) в т. (x1=X0+fx1, y1=0).

3)Если fi1<fip, то вычисляем угол преломления fi2, проекции преломленного луча: fx2=abs(y0)*tg(fi2); fy2=abs(y0); и строим вектор из т. (x1, y1) в т. (x2=x1 + fx2, y2=fy2).

4)Определяем проекции отраженного луча: fx3=abs(y0)*tg(fi1); fy3=-abs(y0); и строим вектор из т. (x1, y1) в т. (x3=x1+fx3, y3=fy3).

Рассмотрим задачу построения траекторий преломленных лучей, проходящих через прозрачную трехгранную призму. Известно, что луч белого цвета разлагается на состав-

ляющие цвета из- за разности коэффициента преломления скольку длина волны зависит от плотности среды. Например, для стекла - тяжелый флинт:Y

для монохромных лучей,

"П2"

Красный

Желтый Зеленый Синий Фиолетовый

Луч, выходящий из источника света под углом "al1" к оси "Х" падает на первую грань призмы под углом "fi1". Преломленный луч падает на вторую грань призмы под углом "fi3" и выходит под углом "al4" к оси "Х".

Алгоритм построения луча, проходящего через призму:

1) Строим призму при заданных углах "fp1" , "fp2" и высоте "h" треугольника,



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15] [стр.16] [стр.17] [стр.18] [стр.19] [стр.20] [стр.21] [стр.22] [стр.23] [стр.24] [стр.25] [стр.26] [стр.27] [стр.28] [стр.29] [стр.30] [стр.31] [стр.32] [стр.33] [стр.34] [стр.35] [стр.36] [стр.37] [стр.38] [стр.39] [стр.40] [стр.41] [стр.42] [стр.43] [стр.44] [стр.45] [стр.46] [стр.47] [стр.48] [стр.49] [стр.50] [стр.51] [стр.52] [стр.53]