Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[32]

Рис. 4-6. Зависимость частоты модуля DCO от температуры 425. DCO модулятор

Модулятор смешивает две DCO-частоты: fDCO и fDCO+1, вырабатывая промежуточную эффективную частоту между fDCO и fDCO+1 и распределяет энергию тактирования, что приводит к снижению электромагнитных помех (EMI1). Модулятор смешивает частоты fDCO и fDCO+1 для 32 тактовых циклов DCOCLK и может конфигурироваться с помощью битов MODx. Когда MODx=0, модулятор выключен.

Смешивание частот модулятором происходит согласно следующей формуле:

t=(32-MODx) х tDCO + MODx х tDCO+1

Поскольку fDCO меньше эффективной частоты, а fDCO+1 выше, погрешность эффективной частоты в сумме равна нулю. Накопления погрешности не происходит. Погрешность эффективной частоты равна нулю каждые 32 цикла DCOCLK. На рис. 4.7 показана работа модулятора.

Параметры настройки модулятора и управления DCO конфигурируются программно. Сигнал DCOCLK может сравниваться со стабильной, заранее известной частотой и подстраиваться с помощью битов DCOx, RSELx и MODx. Заме-

1 EMI - ElectroMagnetic Interference


24 U U U U U U U L

16 vmiiJiJiJiJiJvvmjiJirLrL

Низшая частота fDC0

модуля DC0

Высшая частота fDCOt1 модуля DC0

Рис. 4-7. Диаграмма сигналов модулятора

чания по применению и примеры кода для конфигурирования DCO можно найти на сайте http: www.ti.com/sc/msp430.

42.6. Надежность работы основного модуля тактирования

В основном модуле тактирования имеется возможность определения возникновения неисправности осциллятора. Детектор неисправности осциллятора представляет собой аналоговую схему мониторинга сигналов LFXT1CLK (в режиме HF) и XT2CLK. Неисправность осциллятора определяется, когда любой из этих тактовых сигналов отсутствует в течение приблизительно 50 мкС. Когда обнаруживается неисправность осциллятора, а источником для сигнала MCLK выступает либо LFXT1 в режиме HF, либо XT2, происходит автоматическое переключение MCLK на работу от DCO, как от источника тактовых импульсов. Это позволяет продолжить выполнение программного кода, даже в ситуации, когда кварцевый генератор остановился.

Если установлены флаги OFIFG и OFIE, происходит запрос немаскируемого прерывания NMI. Процедура обработки NMI-прерывания может проверить флаг OFIFG, что позволит выявить возникшую неисправность осциллятора. Очистка флага OFIFG должна производиться программным обеспечением.

Примечание: определение неисправности осциллятора LFXT1 в режиме LF не производится.


Определение неисправности осциллятора выполняется только для LFXT1 в режиме HF и для XT2. Детектирование неисправности осциллятора модуля LFXT1 в режиме LF не производится.

Флаг OFIFG устанавливается сигналом неисправности осциллятора XT OscFault. Сигнал XT OscFault устанавливает POR, когда модули XT2 или LFXT1 в режиме HF имеют неисправность осциллятора. Когда XT2 или LFXT1 в режиме HF останавливаются программным обеспечением, сигнал XT OscFault вырабатывается немедленно, и остается активным пока осциллятор не будет перезапущен, и снимается примерно через 50 мкС после рестарта осциллятора, как показано на рис. 4.8.

XT10FF/ XT20FF

LFXT1CLK/ XT2CLK

XT OscFault

программное включение OSC программное выключение 0SC

-»-\S

неисправность OSC

50 мкс щ

Рис. 4-8. Сигнал неисправности осциллятора

Определение неисправности осциллятора

Сигнал XT OscFault переключает флаг OFIFG так, как показано на рис. 4.9. Сигнал LFXT1 OscFault имеет низкий уровень, когда LFXT1 находится в LF режиме.

В устройствах, у которых модуль XT2 отсутствует, флаг OFIFG не может быть очищен, когда LFXT1 в режиме LF. Источником для сигнала MCLK может являться LFXT1CLK в режиме LF при установке битов SELMx, даже если флаг OFIFG остается поднятым.

В устройствах, имеющих XT2, флаг OFIFG может очищаться программно, когда LFXT1 находится в режиме LF и далее остается очищенным. Источником для сигнала MCLK может являться LFXT1CKL в режиме LF независимо от состояния флага OFIFG.

Использование кварцевого резонатора для формирования MCLK

После сигнала PUC основной модуль тактирования использует DCOCLK для формирования MCLK. Если необходимо, в качестве источника сигнала для MCLK можно использовать LFXT1 или XT2. Для смены источника тактирования сигнала MCLK с модуля DCO на тактирование от кварцевого резонатора (LFXT1CLK или XT2CLK) используется следующая последовательность команд:



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15] [стр.16] [стр.17] [стр.18] [стр.19] [стр.20] [стр.21] [стр.22] [стр.23] [стр.24] [стр.25] [стр.26] [стр.27] [стр.28] [стр.29] [стр.30] [стр.31] [стр.32] [стр.33] [стр.34] [стр.35] [стр.36] [стр.37] [стр.38] [стр.39] [стр.40] [стр.41] [стр.42] [стр.43] [стр.44] [стр.45] [стр.46] [стр.47] [стр.48] [стр.49] [стр.50] [стр.51] [стр.52] [стр.53] [стр.54] [стр.55] [стр.56] [стр.57] [стр.58] [стр.59] [стр.60] [стр.61] [стр.62] [стр.63] [стр.64] [стр.65] [стр.66] [стр.67] [стр.68] [стр.69] [стр.70] [стр.71] [стр.72] [стр.73] [стр.74] [стр.75] [стр.76] [стр.77] [стр.78] [стр.79] [стр.80] [стр.81] [стр.82] [стр.83] [стр.84] [стр.85] [стр.86] [стр.87] [стр.88] [стр.89] [стр.90] [стр.91] [стр.92] [стр.93] [стр.94] [стр.95] [стр.96] [стр.97] [стр.98] [стр.99] [стр.100] [стр.101] [стр.102] [стр.103] [стр.104] [стр.105] [стр.106] [стр.107] [стр.108] [стр.109] [стр.110] [стр.111] [стр.112] [стр.113] [стр.114] [стр.115] [стр.116] [стр.117] [стр.118] [стр.119] [стр.120]