Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[31]

Программное обеспечение может отключить осциллятор LFXT1 установкой OSCOFF, если этот сигнал не используется в качестве источника для SMCLK или MCLK, как показано на рис. 4.2.

OSCOFFH-CPUOFFB-SELMO -SELM1 -

SCG11 SELSl

ХТ2 это внутренний сигнал ХТ2 = 0: в устройствах MSP430x11xx, MSP430x12xx ХТ2 = 1: в устройствах MSP430x13x, MSP430x14x MSP430x15x, MSP430x16x

Рис. 4-2. Сигналы выключения осциллятора LFXT1

Примечание: характеристики осциллятора LFXT1

Низкочастотным кристаллам, в зависимости от типа, часто требуются сотни миллисекунд для старта. Это допускается для осциллятора LFXT1 в LF режиме.

Осцилляторы с ультранизким потреблением, такие как LFXT1 в режиме LF необходимо защищать от шумов других источников. Кристалл следует размещать как можно ближе к MSP430 с заземленной площадкой под ним, а трассировку проводников от кристалла выполнять с защитными заземляющими проводниками.

При работе осциллятора LFXT1 в режиме LF требуется подключение резистора 5,1 МОм между выводами Xout и Vss, когда Vcc < 2,5 В.

4.2.3. Осциллятор XT2

Некоторые устройства имеют второй кристаллический осциллятор XT2. XT2 является источником сигнала XT2CLK, а его характеристики идентичны LFXT1 в режиме HF. Бит XT2OFF отключает осциллятор XT2, если XT2CLK не используется для MCLK или SMCLK, как показано на рис. 4.3.

XT может быть использован с внешним источником тактирования, который подключается к выводу XT2IN. Частота внешнего тактового сигнала выбирается в соответствии с параметрами XT2.

42.4. Осциллятор с цифровым управлением (DCO)

DCO представляет собой интегрированный автогенератор с характеристикой RC-типа. Как у любого осциллятора RC-типа, его частота зависит от температуры, напряжения и отличается от устройства к устройству. Частота DCO может подстраиваться программным обеспечением с помощью битов DCOx, MODx и


XT20FF -

CPUOFF -о

SELM1 -

SELMO Ol

SCG1 -Of SELS -

-H> XT20ff (Внутренний сигнал)

Рис. 4-3. Сигналы выключения осциллятора XT2

RSELx. Цифровое управление осциллятором позволяет стабилизировать частоту, несмотря на характеристику RC-типа.

Отключение DCO

Программное обеспечение может отключать DCOCLK, когда он не используется в качестве источника для SMCLK или MCLK, как показано на рис. 4.4.

CPUOFF ---х

XSELM1 SCG1

DCOCLKjn -►

1: включен 0: выключен

Рис. 4-4. Включение/выключение DCO

DCO Gen on

-►

включен 0: выключен

Подстройка частоты DCO

После сигнала PUC для DCO генератора выбирается встроенный резистор, устанавливаются значения RSELx=4 и DCOx=3, в результате DCO стартует с усредненной частоты. В качестве источника для MCLK и SMCLK используется DCOCLK. Поскольку при выполнении кода ЦПУ тактируется от сигнала MCLK, который использует быстро-стартующий DCO, выполнение кода начинается менее чем через 6 мкС после сигнала PUC. На рисунке 4-5 приведена зависимость частоты DCO от значений DCOx и RSELx

Частота DCOCLK устанавливается следующими способами:

•Фундаментальная частота определяется инжекцией тока в DC генератор через внутренний либо внешний резистор. Бит DCOR позволяет выбрать внутренний или внешний резистор.

•Три бита RSELx позволяют выбрать для DCO один из восьми номинальных диапазонов частот. Эти диапазоны определены для конкретного устройства в соответствующем ему справочном руководстве.

•Три бита DCOx делят диапазон DCO, выбранный с помощью битов RSELx на 8 уровней частоты, различающихся примерно на 10%.


• Пять битов MODx выполняют переключение между частотой, устанавливаемой битами DCOx и следующей более высокой частотой, устанавливаемой DCOx+1. В случае установки DCOx = 07h значение MODx не будет влиять на частоту DCO, так как для DCOx уже установлено максимальное значение.Диапазоны DCOx и RSELx, а также возможные шаги изменения частоты показаны на рис. 4.5.

fDCO 10000 кГц -

1000 кГц

100 кГц

RSEL=6 RSEL=5 RSEL=4 RSEL=3 RSEL=2 RSEL=1 RSEL=0

DCO=0 DCO=1 DC0=2 DCO=3 DCO=4 DCO=5 DCO=6 DCO=7

Рис. 4-5. Диапазон DCOx и шаги RSELx

Использование внешнего резистора (Rose) для DCO

Температурный коэффициент DCO может быть уменьшен при использовании внешнего резистора Rose в качестве источника тока для DC генератора. На рис. 4.6 показана типичная зависимость частоты DCO от температуры для встроенного и внешнего резисторов. Использование внешнего резистора Rose уменьшает температурный коэффициент DCO примерно на -0.05%/С. Подробные характеристики приведены в справочном руководстве на конкретное устройство.

Резистор Rose также позволяет работать DCO на высоких частотах. К примеру, встроенный резистор с номинальным сопротивлением около 300 кОм позволяет работать модулю DCO на частоте приблизительно до 5 МГц. Когда используется внешний резистор Rose сопротивлением около 100 кОм, DCO может работать на частотах до 10 МГц. Пользователю необходимо соблюдать осторожность, чтобы не превысить максимальную частоту MCLK, указанную в справочных данных, даже если DCO способен работать на более высоких частотах.



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15] [стр.16] [стр.17] [стр.18] [стр.19] [стр.20] [стр.21] [стр.22] [стр.23] [стр.24] [стр.25] [стр.26] [стр.27] [стр.28] [стр.29] [стр.30] [стр.31] [стр.32] [стр.33] [стр.34] [стр.35] [стр.36] [стр.37] [стр.38] [стр.39] [стр.40] [стр.41] [стр.42] [стр.43] [стр.44] [стр.45] [стр.46] [стр.47] [стр.48] [стр.49] [стр.50] [стр.51] [стр.52] [стр.53] [стр.54] [стр.55] [стр.56] [стр.57] [стр.58] [стр.59] [стр.60] [стр.61] [стр.62] [стр.63] [стр.64] [стр.65] [стр.66] [стр.67] [стр.68] [стр.69] [стр.70] [стр.71] [стр.72] [стр.73] [стр.74] [стр.75] [стр.76] [стр.77] [стр.78] [стр.79] [стр.80] [стр.81] [стр.82] [стр.83] [стр.84] [стр.85] [стр.86] [стр.87] [стр.88] [стр.89] [стр.90] [стр.91] [стр.92] [стр.93] [стр.94] [стр.95] [стр.96] [стр.97] [стр.98] [стр.99] [стр.100] [стр.101] [стр.102] [стр.103] [стр.104] [стр.105] [стр.106] [стр.107] [стр.108] [стр.109] [стр.110] [стр.111] [стр.112] [стр.113] [стр.114] [стр.115] [стр.116] [стр.117] [стр.118] [стр.119] [стр.120]