Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[6]

связи колебания затухают и генерация прекращается, а при более сильной - амплитуда колебаний растет и активный элемент (обычно транзистор) либо входит в насыщение, либо закрывается напряжением, вырабатываемым цепью стабилизации амплитуды. В обоих случаях усиление уменьшается, восстанавливая баланс амплитуд. Связь контура с остальными элементами схемы генератора выгодно делать слабой, чтобы возможные нестабильности этих элементов меньше влияли на частоту колебаний. Вносимые цепями связи потери в контур получаются малыми, а его нагруженная добротность - максимально высокой.

Условие баланса фаз состоит в том, чтобы колебания, усиленные активным элементом, подводились к контуру синфазно с его собственными. Следовательно, общий фазовый сдвиг по петле обратной связи должен составлять 0°. Любой транзисторный усилитель вносит некоторую задержку усиливаемого сигнала из-за конечного времени прохождения носителей тока, влияния паразитных емкостей и т. д. Это приводит к запаздыванию по фазе сигнала обратной связи. Оно тем меньше, чем больше отношение граничной частоты транзистора к генерируемой частоте. Поэтому в задающих генераторах следует применять транзисторы с граничной частотой, по крайней мере, в 10...20 раз выше генерируемой. Оставшийся фазовый сдвиг компенсируется контуром. На рис. 19 приведены АЧХ и ФЧХ одиночного колебательного контура. По оси

абсцисс отложена относительная расстройка Х= 2Дf Q/fo. При х=1 амплитуда колебаний падает до 0,7 резонансного значения, а фазовый сдвиг достигает 45°. В реальном генераторе колебания происходят не на собственной частоте контура, а на той, где его фазовый сдвиг противоположен и равен сдвигу фазы в активном элементе и цепях связи. При этом имеющееся частотное отклонение тем меньше, чем круче фазовая характеристика контура, а следовательно, и больше его добротность. Таким образом, существенного улучшения стабильности частоты можно добиться, применив контур высокой добротности и высокочастотный транзистор, как можно слабее связанный с контуром.

Остается еще собственная нестабильность резонансной частоты контура. Она вызвана изменениями температуры и механической нестабильностью элементов. Изменение индуктивности и емкости при нагреве на 1 °С характеризуют температурными коэффициентами индуктивности и емкости (ТКИ и ТКЕ). В правильно спроектированном генераторе они должны быть равны и противоположны по знаку - в этом и состоит принцип температурной компенсации. ТКИ всех катушек, как правило, положителен, что объясняется увеличением их геометрических размеров при нагреве. Наименьший ТКИ у кату-шек с керамическими каркасами, изготовленных методом вжиганйя проводящих витков. Небольшой ТКИ и у катушек, намотанных на керамических каркасах с большим натяжением провода. Отрицательным ТКЕ обладают керамические конденсаторы с красным ( - 700*10-6) и голубым ( - 50*10-6) цветом окраски. Обычно в контур включают основной конденсатор с небольшим ТКЕ (серый или голубой) и термокомпенсирующий конденсатор меньшей емкости с большим отрицательным ТКЕ (красный). Подбирая соотношение их емкостей, добиваются примерного постоянства резонансной частоты контура при нагреве. Очень важно защитить контур от тепловых потоков, циркулирующих внутри аппарата. Недопустим обдув деталей контура задающего генератора конвекционными или иными потоками воздуха. Лучше всего поместить контур в закрытую металлическую коробку-экран. Если ее сверху покрыть теплоизолирующим материалом (дерево, пенопласт), то из-за большой тепловой инерции конструкции температурные уходы частоты будут медленными и незаметными при обычной оперативной работе в эфире. В особо важных случаях контур или даже весь задающий генератор термостатируют.

Монтаж генератора надо выполнять жестким одножильным проводом, соединительные проводники должны быть по возможности короткими. Не следует выбирать контур с малой индуктивностью и большой емкостью - это не способствует повышению добротности и увеличивает влияние паразитной индуктивности выводов катушки и конденсаторов. Механическая конструкция генератора должна полностью исключать возможность хотя бы малого перемещения его деталей относительно друг друга. Лучше всего в этом отношении литые корпуса. Переменный конденсатор надо выбирать наилучшего качества или вообще отказаться от него, применив электронную настройку.

if8..3Q

V3

X M30JE

№ И 08 150 209* V U 390

Рис. 20. Задающий генератор на полевых транзисторах


Рассмотрим теперь практические схемы задающих генераторов (гетеродинов). Несложен генератор на полевом транзисторе, выполненный по схеме индуктивной трехточки (схема Хартли), показанный на рис. 20. Контур генератора содержит катушку L1 и конденсаторы С1...С4. Переменным конденсатором С1 перестраивают генератор по диапазону, а подстроечным С2 устанавливают среднюю частоту диапазона. Основную емкость контура составляют конденсаторы СЗ и C4, причем первый выбран с малым ТКЕ, а второй - с большим отрицательным. Связь контура с цепью затвора транзистора VI регулируют подстроечным конденсатором С5, устанавливая его емкость минимальной, при которой еще существует генерация. Для стабилизации амплитуды колебаний служит диод V2. Он выпрямляет ВЧ колебания и создает отрицательное смещение на затворе транзистора VI. При возрастании амплитуды колебаний смещение увеличивается и усиление транзистора падает, уменьшая коэффициент обратной связи. Собственно обратная связь получается при протекании тока транзистора по части витков катушки L1. Отвод к истоку сделан от 1/4... 1/5 части общего числа витков, считая от заземленного вывода. Импеданс контура, пересчитанный к отводу катушки, уменьшается в 16...25 раз, поэтому истоковая цепь транзистора также незначительно шунтирует контур.

Рис. 21. Задающий генератор на биполярных транзисторах

Второй каскад генератора - буферный. Он нужен для ослабления влияния последующих каскадов на генерируемую частоту. Буферный каскад собран на полевом транзисторе V3 по схеме истокового повторителя. Благодаря высокому входному сопротивлению он практически не шунтирует контур задающего генератора. Этому же способствует малая емкость конденсатора связи С6 и подключение его к истоковому отводу катушки. Напряжение питания генератора, как и любого другого задающего генератора или гетеродина, должно быть стабилизировано. При использовании высококачественных деталей в генераторе частотный дрейф получается менее 50 Гц в течение часа на диапазоне 3,5 МГц.

Задающий генератор можно собрать и на биполярных транзисторах. Одна из удачных схем приведена на рис. 21. В контур генератора входят элементы L1 и С1...С6. Электроды транзистора подключены к делителю, составленному из конденсаторов С4...С6. Слабая связь с контуром получается благодаря выбору минимально возможной емкости конденсатора С4 и значительной емкости конденсаторов С5 и Сб. Поскольку последние подключены параллельно переходам транзистора, влияние междуэлектродных емкостей значительно ослаблено. Сигнал на буферный повторитель снимается с небольшого сопротивления нагрузки R3, включенного в коллекторную цепь транзистора VI. Выходное ВЧ напряжение генератора в диапазоне 7 МГц составляет 100...150 мВ.

Перестраивать частоту задающих генераторов можно не только переменным конденсатором, но и электронным способом - с помощью варикапа или, что лучше, варикапной матрицы. Схема ее включения показана на рис. 22. Матрицу можно составить и из двух отдельных варикапов, включив их так же, как на рисунке. Благодаря встречному включению варикапов для переменного тока уменьшается зависимость частоты от амплитуды высокочастотного напряжения. Параметры контура под имеющуюся варикапную матрицу легко рассчитать. Например, для КВС111Б емкость изменяется от 20 до 40 пФ при изменении смещения от 9 до 2 В. Изменение емкости составляет 20 пФ. Если перекрытие по частоте должно быть, скажем, 6 %, то необходимое изменение емкости составит 12 % (вдвое больше, так как индуктивность контура не изменяется). Отсюда находим полную емкость контура С = 20 пФ/0,12=167 пФ. Индуктивность контура рассчитывается по общеизвестной формуле Том-сона: L=l/(2mf)2C Емкость варикапов и варикапных матриц других типов при различных напряжениях смещения можно оценить по приближенной формуле с=2Со/VU, где С0 - паспортное значение емкости при напряжении смещения 4 В, и - напряжение смещения. Чтобы не ухудшилась стабильность частоты, напряжение смещения варикапов должно быть очень хорошо стабилизировано и отфильтровано.


Рис. 22. Схема электронной настройки

Рис. 23. Схема электронного сдвига частоты

Подобную же цепь можно применить и для сдвига частоты генератора при переходе с приема на передачу. Варикап в этом случае подключается через конденсатор небольшой емкости, поскольку требуемый сдвиг частоты невелик. Схема цепи показана на рис. 23. В положении переключателя S1 «Т» (передача) на варикап подается фиксированное напряжение смещения с делителя R3R4. При переходе на прием (положение «R») смещение изменяется переменным резистором R5, сдвигая частоту. Пределы перестройки можно подобрать, изменяя емкость конденсатора С5 или соотношение сопротивлений делителя R2...R6. В этой цепи вместо варикапа любого типа можно использовать и обычные кремниевые диоды, например серий Д101...Д105, собственная емкость которых также изменяется при изменении запирающего напряжения, хотя и в значительно меньших, чем у варикапа, пределах.

Рис. 24. Составной буферный каскад

Значительно ослабить влияние последующих каскадов на частоту генератора можно, применив двухкаскад-ный буферный усилитель по схеме рис. 24. Первый транзистор (полевой) включен по схеме истокового повторителя. Он обладает высоким входным сопротивлением. Второй каскад - обычный усилитель на биполярном транзисторе V2. Его нагрузкой служит дроссель L1, который на низкочастотных диапазонах можно заменить резистором с сопротивлением 300...900 Ом, а на ВЧ диапазонах - настроенным колебательным контуром. На выходе каскада включен фильтр гармоник L2C4C5, его данные приведены для диапазона 3,5 МГц. Для других диапазонов емкости и индуктивность фильтра изменяются обратно пропорционально частоте. Выходное ВЧ напряжение (0,1...0,5 В) устанавливают подстроечным резистором R4.

Для повышения чувствительности и реальной селективности приемника трансивера важен низкий уровень шумов гетеродина. Низкочастотные шумы транзисторов гетеродина слабо модулируют его сигнал по амплитуде и фазе. Детектируясь в смесителе, шум гетеродина может увеличить общий уровень шума



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15] [стр.16] [стр.17] [стр.18] [стр.19] [стр.20] [стр.21] [стр.22] [стр.23] [стр.24]