Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[5]

единицы микровольт. Путей решения проблемы по крайней мере два. Один состоит в установке ре-жекторного фильтра в УНЧ приемника, подключенном к низкочастотному выходу модулятора-демодулятора. Если полоса режекции будет достаточно узкой, а глубина ре-жекции достигнет 60 дБ, свист с частотой 1600 Гц не будет слышен, а разборчивость речевого сигнала практически не ухудшится. Другой путь состоит в применении усилителей, включенных в оба канала вслед за фильтрами Z1 и Z2. Усилители поднимают уровень полезного сигнала до такого значения (десятки милливольт), при котором остатком неподавленного вспомогательного сигнала можно пренебречь.

Рис. 17. Структурная схема фазофильтрового трансивера

Именно по этому пути пошли зарубежные конструкторы при разработке фазофильтрового УКВ приемника [2] и однополосного трансивера для военной связи [3]. Последний является, насколько известно автору, единственным серийно выпускаемым аппаратом, использующим фазовый или фазофильтровый метод. В печати приводились лишь подробная структурная схема и основные параметры, перечисленные ниже:

диапазон частот 1,6 ... 30 МГц,

чувствительность не хуже 1 мкВ при отношении сигнал/шум на выходе приемника 10 дБ, селективность не хуже 60 дБ при расстройке на 5 кГц, подавление паразитных каналов приема более 80 дБ, выходная пиковая мощность 20 Вт.

Рис. 18. Фазофильтровый трансивер с переключением гетеродинов

Структурная схема этого трансивера (фирмы MEL/Philips) приведена на рис. 17. Все переключатели прием/передача показаны в положении «прием». В этом режиме сигнал из антенны W1 через согласующее устройство VI подается на один из восьми входных полосовых фильтров Z1, переключаемых в зависимости от


выбранного диапазона частот. Эти фильтры ослабляют прием на гармониках гетеродина и внеполос-ные помехи. Далее сигнал поступает через УВЧ приемника А2 на балансные обратимые смесители U2 и U3. Гетеродинные сигналы со сдвигом фаз 90° подаются на смесители от синтезатора частот G1, обеспечивающего перекрытие всего рабочего диапазона с шагом 100 Гц. Фазовый сдвиг 90° получается при делении частоты гетеродина синтезатора на четыре цифровыми счетчиками. Одновременно синтезатор вырабатывает и вспомогательный сигнал с частотой 1800 Гц для второго низкочастотного преобразования частоты. Сигналы в двух каналах с выхода смесителей U2 и U3 проходят через ФНЧ Z2...Z5 с частотой среза 1500 Гц и усилители А4 и А6. ФНЧ в каждом канале разделен на две секции, включенные до усилителя и после него, благодаря чему ослабляется влияние высокочастотных компонентов шума усилителей А4 и А6. Отфильтрованные и усиленные сигналы через регулируемые аттенюаторы системы АРУ El и Е2 поступают на низкочастотные смесители U4 и U6. К ним же подводится вспомогательный гетеродинный сигнал с частотой 1800 Гц через фазовращатель U5. Выходной звуковой сигнал через ФНЧ Z6 с частотой среза 3300 Гц поступает на оконечный УНЧ А8 и громкоговоритель В2. Одновременно звуковой сигнал подается и на детектор АРУ U7, управляющий аттенюаторами El, Е2 и усилением УВЧ А2.

При передаче сигнал от микрофонного усилителя A7 проходит через модуляторы (смесители) и фильтры в обратном направлении, причем в каналах фазофильтрового формирователя в этом случае включаются усилители A3 и А5. Сформированный SSB сигнал поступает на усилитель мощности передатчика А1 и с его выхода через согласующее устройство U1 в антенну. Более подробных сведений об этом интересном трансивере, к сожалению, не имеется.

Существенного упрощения схемы, особенно в части коммутации прием-передача, можно достичь, применив ключевые балансные модуляторы и цифровые фазовращатели, описанные ниже. Эти устройства одинаково хорошо работают и на низких и на высоких частотах, поэтому можно коммутировать гетеродины, сохранив направление прохождения сигнала в каналах формирователя, подобно тому, как это сделано в трансиверах «At-las» и «Радио-76». Структурная схема фазофильтрового трансивера с переключением гетеродинов показана на рис. 18. При приеме сигнал из антенны W1 через пресе-лектор Z1 подается на ВЧ входы смесителей VI и U2. К ним же через фазовращатель U3 подводятся колебания высокочастотного гетеродина G1. Преобразованные сигналы двух каналов через ФНЧ Z2 и Z3 с частотой среза 1200 Гц и усилители А2 и A3 поступают на вторые смесители U4 и U5. К последним через фазовращатель U6 подводятся колебания гетеродина G2 с частотой 1600 Гц. Демодулированный звуковой сигнал через ФНЧ Z4 с частотой среза 2,8 кГц поступает на оконечный УНЧ А5 и громкоговоритель В2. При переходе на передачу смесители и гетеродины как бы меняются местами. Звуковой сигнал от микрофонного усилителя А1 поступает на модуляторы (смесители) VI и U2, смешиваясь с вспомогательным сигналом с частотой 1600 Гц. Далее, как и при приеме, смешанные сигналы проходят фильтры Z2, Z3, усилители А2, A3 и поступают на модуляторы U4 и U5. К ним теперь подводится напряжение от ВЧ гетеродина G1, Сформированный SSB сигнал поступает на усилитель мощности А4, а с его выхода через переключатель прием-передача в антенну. Описанная структурная схема только проект - практически она еще не реализована.

До сих пор мы рассматривали только телеграфные и однополосные трансиверы прямого преобразования, однако принцип можно с успехом применить и при других видах модуляции. AM рассматривать не будем ввиду ее малой эффективности. На УКВ широко используется частотная и фазовая модуляция (ЧМ и ФМ). Они различаются только спектром НЧ сигнала, подводимого к модулятору. При ЧМ девиация (отклонение) частоты передатчика прямо пропорциональна мгновенному значению звукового напряжения. Если же к частотному модулятору подвести предварительно продифференцированный звуковой сигнал (что обычно и делается), получится фазовая модуляция. При этом уже не частота, а отклонение фазы сигнала будет пропорционально мгновенному значению исходного звукового напряжения. Для дифференцирования пригодна обычная RC цепочка с постоянной времени около 50 мкс. Практически емкость одного из разделительных конденсаторов в микрофонном усилителе выбирают в 5 ... 10 раз меньше обычной. Фазовая модуляция получается и при включении варикапа, к которому подведено звуковое напряжение, в один из промежуточных контуров передатчика. Предыскажения звукового спектра в этом случае не нужны. ФМ предпочтительнее ЧМ, поскольку при небольших индексах модуляции, порядка единицы, промодулированный сигнал содержит в своем спектре боковые полосы только первого порядка, и спектр получается таким же, как при AM (см. рис. 4). Лишь фаза несущей оказывается сдвинутой по отношению к фазе боковых полос на 90°. Сигнал с такой модуляцией хорошо принимается и на обычные SSB приемники.

ФМ легко ввести в трансивер, выполненный по схеме рис. 1, включив во входном контуре усилителя мощности варикап и подав на него сигнал от микрофонного усилителя. Сложнее обстоит дело с приемником. Для приема ФМ сигнала гетеродин G1 необходимо синхронизировать с несущей принимаемого сигнала. Без синхронизации прием хотя и возможен при настройке по нулевым биениям, но будет невысокого качества по причинам, уже описанным в случае DSB модуляции. Практически синхронизацию можно получить введением в приемник цепи фазовой автоподстройки гетеродина (цепи ФАПЧ). Усилитель А1 (или его первые каскады) в этом случае должен быть усилителем постоянного тока, а выходное напряжение усилителя подается на варикап, включенный в контур гетеродина. Подробнее о приемниках с ФАПЧ можно узнать из книги [12]. Полоса удержания системы ФАПЧ, т. е. полоса расстроек, при которых еще не срывается слежение за частотой принимаемого сигнала, пропорциональна напряжению входного сигнала. При радиовещательном приеме ЧМ


сигналов уже достигнута чувствительность порядка 100 мкВ при полосе удержания 100 кГц. Это позволяет надеяться получить чувствительность порядка единиц микровольт при полосе удержания около 1 кГц, что вполне достаточно для приема ФМ с малым индексом модуляции. Подобные трансиверы еще не разрабатывались, но на их основе, вероятно, вполне возможно создать очень простые и дешевые УКВ радиостанции, в том числе и портативные.

Имеется и еще одна интересная возможность. Если в ФМ трансивере с ФАПЧ одновременно с приемом излучать сигнал передатчика, то можно осуществить дуплексную (двунаправленную) связь в одном и том же частотном канале. Излучаемый станцией сигнал одновременно будет служить и гетеродинным для «своего» приемника. В этом случае оба гетеродина трансиверов синхронизируются друг с другом с точностью до фазы и при фазовой модуляции сигнала одного из передатчиков модулирующее сообщение будет услышано обоими корреспондентами с одинаковой громкостью. Для разработки дуплексных ФМ трансиверов еще нужно провести большую экспериментальную работу, которая тем не менее вполне по силам радиолюбителям. Несомненно, что есть и другие области применения описанных здесь принципов, которые будут выявляться по мере развития техники прямого преобразования.

Закончив обзор возможных принципов построения трансиверов прямого преобразования, перейдем к описанию их схемных решений.

ГЛАВА ВТОРАЯ.

ЭЛЕМЕНТЫ СХЕМ ТРАНСИВЕРОВ 1. ЗАДАЮЩИЕ ГЕНЕРАТОРЫ

Качество сигнала, излучаемого в эфир радиостанцией, - это ее лицо, ее «визитная карточка». Оно во многом определяется задающим генератором передатчика. Требования, предъявляемые к задающему генератору, общеизвестны: это прежде всего высокая стабильность частоты. Уход частоты за время проведения самой долгой связи не должен превосходить 50...100 Гц, лишь в этом случае корреспондент не будет вынужден подстраивать приемник. Относительная нестабильность частоты при таком уходе должна быть не хуже 5 10~5 в диапазоне 160 м и 3 10~6 в диапазоне 10 м. Если первую цифру получить сравнительно несложно, то вторую - можно лишь при тщательном выборе схемы, проектировании и изготовлении генератора. Другое, не менее важное требование состоит в отсутствии модуляции сигнала генератора шумом, фоном, изменениями напряжения питания и т. д.

Рис. 19. АЧХ и ФЧХ колебательного контура

Посмотрим, как удовлетворить поставленным требованиям. Любой генератор содержит колебательную систему и активный элемент, служащий для усиления мощности сигнала, снимаемого с колебательной системы. Усиленный сигнал через цепь обратной связи подается снова в колебательную систему, компенсируя ее потери. Они обратно пропорциональны добротности колебательной системы. Наивысшую добротность имеют кварцевые резонаторы, кроме того, параметры кварца мало зависят от температуры. Поэтому кварцевые генераторы могут иметь относительную нестабильность частоты до 10~7. Но кварцевый генератор с помощью внешних цепей нельзя перестраивать по диапазону более чем на 0,1...0,3 %, что намного меньше ширины любительских диапазонов (1,5.. .6 %). Поэтому любители чаще используют LC генераторы с перестраиваемым контуром.

Для возбуждения колебаний в контуре надо выполнить два условия: баланс амплитуд и баланс фаз. Условие баланса амплитуд требует, чтобы энергия, подводимая к контуру от активного элемента, в точности равнялась потерям энергии в самом контуре и цепях связи с другими элементами генератора. При более слабой обратной



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15] [стр.16] [стр.17] [стр.18] [стр.19] [стр.20] [стр.21] [стр.22] [стр.23] [стр.24]