Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[16]

ВЧ сигнала усилитель переходит последовательно в классы АВ, В и С. Класс В соответствует положению рабочей точки на нижнем сгибе характеристики. Угол отсечки тока, измеряемый в градусах, как доля полупериода возбуждающего напряжения, в течение которой протекает анодный ток, составляет при этом 90°. В классе С (угол отсечки меньше 90°) при отсутствии ВЧ сигнала усилитель полностью заперт и анодный ток покоя отсутствует. Этот класс характеризуется наивысшим КПД. Возникает естественный вопрос: если в классах АВ - С анодный ток носит характер коротких импульсов (см. рис. 73), то как получить в антенне синусоидальный ток? Эту задачу выполняет выходной колебательный контур. Запасая энергию импульсов тока, он отдает ее в антенну в течение всего периода колебания. Следовательно, для получения малых искажений синусоидальных колебаний ВЧ сигнала, что соответствует малому содержанию гармоник, добротность выходного контура не должна быть малой. Если получить достаточную добротность контура (не менее 10...20) трудно, как это часто бывает в транзисторных каскадах, надо выполнить выходную цепь в виде ФНЧ (П-контур) или двух-, трехконтурного полосового фильтра.

Рис. 73. Классы усиления im.

Рис. 74. Режимы усилителя мощности

Для усиления мощности телеграфных сигналов, уровень которых постоянен, пригодны усилители, работающие в любом классе усиления. Ввиду высокого КПД предпочтителен класс С. А для усиления SSB сигналов класс С непригоден, поскольку амплитудная характеристика усилителя, работающего в этом классе, очень


нелинейна при малых уровнях сигнала, что часто бывает при передаче SSB сигнала. В телефонных тран-сиверах используют усилители мощности, работающие только в классе АВ. При больших уровнях сигнала усилитель входит в насыщение, и выходная мощность уже не растет при увеличении возбуждения. Заход в область насыщения возможен в телеграфных усилителях, но недопустим в однополосных, поскольку при этом искажается огибающая SSB сигнала. Описанные причины приводят к тому, что однополосные усилители при прочих равных условиях работают с худшим КПД и отдают меньшую мощность, чем телеграфные.

При работе выходного каскада нельзя не учитывать реакцию выходной цепи. На пиках импульсов анодного тока напряжение на аноде минимально, поскольку мгновенное напряжение на контуре вычитается из напряжения анодного питания Еп. Это снижает амплитуду импульса анодного тока и приводит к появлению провала на его вершине (рис. 74). Если сопротивление нагрузки мало и переменное напряжение на контуре меньше напряжения питания, искажения формы импульсов тока нет, но каскад не отдает максимально возможной мощности. Такой режим называется недонапряженным. При оптимальном сопротивлении нагрузки JR - Ro форма импульсов слегка искажена, а переменное напряжение на контуре почти равно напряжению питания. Это критический, наиболее благоприятный режим. Перенапряженный режим получается при R>Ro, например при недостаточной связи выходного контура с антенной, когда эквивалентное сопротивление контура слишком велико. Переменное напряжение на контуре при этом больше напряжения питания, так что на пиках мгновенное анодное напряжение становится отрицательным и ток через лампу прекращается. Перенапряженный режим характеризуется глубокими провалами импульсов тока, часто до нуля. В транзисторных каскадах изменение полярности напряжения коллекторного перехода приводит к его открыванию, и запасенная в выходном контуре мощность поступает обратно в цепи предварительного каскада, нарушая и его работу. В перенапряженном режиме падает отдаваемая мощность, возрастает излучение гармоник, увеличиваются искажения огибающей, а в транзисторных каскадах из-за перенапряжений возможен пробой переходов. Вот почему транзисторные каскады нельзя настраивать без нагрузки. Сопротивление нагрузки R определяется входным сопротивлением антенны, трансформированным выходным контуром или фильтром. Подбор оптимального коэффициента трансформации, как видно из приведенного описания, важен для нормальной работы выходного каскада и получения в антенне максимально возможной мощности.

Ориентировочно рассчитать выходной каскад можно, задавшись выходной мощностью и напряжением питания. Полагая для критического режима U = 0,9 Еп, находим амплитуду ВЧ напряжения на контуре U. Амплитуда первой гармоники тока в контуре составит: I = 2P/U, где Р - выходная мощность. Затем определяем оптимальное сопротивление нагрузки каскада R0 - U[I. Амплитуду импульсов и постоянную составляющую анодного тока можно найти, пользуясь коэффициентами разложения косинусоидальных импульсов, приведенными в табл. 5.

Таблица 5

Угол отсечки, град.

Класс усиления

Выбранные лампа или транзистор должны отдавать максимально допустимый ток не менее Ь1ах. В заключение определяют мощность, подводимую от источника питания Р0=IоEп и КПД n - Р/Ро. Реальный КПД и отдаваемая в антенную мощность будут несколько ниже из-за потерь в выходном контуре.

Рассмотрим практические схемы усилителей мощности. Схема транзисторно-лампового усилителя с подводимой мощностью 10 Вт для диапазона 10 м показана на рис. 75. Предварительный усилитель (драйвер) собран на транзисторе VI. На его вход достаточно подать сигнал менее 1 В от буферного каскада или умножителя частоты. Транзистор работает в режиме класса С без начального смещения. Напряжение питания на него подается от низковольтного выпрямителя через телеграфный ключ, подсоединяемый к гнездам XI. Усиленный сигнал выделяется контуром L1C3, настроенным на среднюю частоту диапазона 28...29,7 МГц. Диод V2 препятствует отпиранию коллекторного перехода в случае перенапряженного режима и тем самым значительно уменьшает влияние нагрузки на предыдущие каскады. При нормальном режиме диод открыт коллекторным током транзистора и не мешает его работе. Смещение на сетку лампы выходного каскада V3 подается с потенциометра R4 и устанавливается таким, чтобы полностью запереть лампу при отжатом ключе. Анодная цепь лампы собрана по схеме параллельного питания. Постоянная составляющая тока проходит через дроссель L2, а переменная ответвляется в выходной контур L3C10 через конденсатор С9, Анодные и экранные цепи лампы питаются от выпрямителя на диодах V8, V9, включенных по схеме удвоения напряжения. Это позволило подать на анод +300 В, а на экранную сетку +150 В без использования гасящих сопротивлений или делителей,


рассеивающих значительную мощность.

W ftTJ/SB

VJ 6Ш5П

C2 0f0i ШШО

5>8к

х£ОВ

Л# 5800

Q лот

sis: £

Рис. 75. Транзисторно-ламповый усилитель мощности

Катушка L1 и дроссель L2 намотаны на керамических каркасах диаметром 8 мм. Каркасами могут служить керамические трубочки или стержни резисторов ВС-2. L1 содержит 15 витков провода ПЭЛ 0,5, длина намотки 15 мм, а дроссель наматывается виток к витку проводом ПЭЛШО 0,25 в один слой до заполнения каркаса, длина намотки 35...40 мм. Катушка выходного контура L2 содержит 15 витков голого медного или посеребренного провода диаметром 0,8...! мм. Она намотана на ребристом керамическом каркасе со средним диаметром витка 20 мм и длиной намотки 45 мм. Отвод к антенне с сопротивлением 75 Ом сделан от 2,5 витка, считая от заземленного вывода катушки. Трансформатор питания Т1 самодельный. Он намотан на сердечнике Ш 20X28. Первичная обмотка содержит 1630 витков провода ПЭЛ 0,25, вторичная высоковольтная 900 витков ПЭЛ 0,17, вторичная низковольтная 100 витков ПЭЛ 0,44 и накаль-ная 48 витков ПЭЛ 0,69.

При монтаже передатчика дроссель L2 и катушку L3 следует расположить сверху шасси рядом с лампой. Анодный провод выводится через отверстие в шасси, просверленное рядом с лепестком ламповой панельки. Контур L1C3 располагают в подвале шасси, рядом с панелькой со стороны сеточного вывода. Выводы блокировочного конденсатора С7, укоротив их до минимальной длины, припаивают непосредственно к лепесткам панельки, а сам конденсатор располагают между анодным и сеточным выводами лампы. Такая конструкция сводит к минимуму связь входных и выходных цепей мощного каскада и позволяет обойтись без экранировки катушек. Налаживание усилителя сводится в основном к настройке контуров по максимуму отдаваемой мощности. Положение отвода катушки L3 к антенне подбирают так, чтобы при настройке выходного контура в резонанс анодный ток уменьшался на 10... 15 %. Это примерно соответствует критическому режиму анодной цепи.

Подобный же усилитель можно собрать и на другие диапазоны. Схема остается прежней, изменяются лишь данные контуров. При пересчете полезно пользоваться следующим правилом: емкость контура увеличивается пропорционально длине волны, а число витков катушки - пропорционально корню квадратному из этой величины, причем диаметр и длина намотки остаются прежними. Соответственно уменьшается и диаметр провода. Например, при переходе с диапазона 10 м на 40 м емкости надо увеличить вчетверо, а число витков вдвое. На НЧ диапазонах надо также увеличить емкость разделительных конденсаторов С1, С4 и С9, хотя она и некритична.

Остановимся на практических схемах транзисторных усилителей мощности. Они, как правило, широкополосны, имеют низкие входное и выходное сопротивления, усиление их меньше, чем ламповых. В телеграфных передатчиках удобно соединять по постоянному току выводы базы и эмиттера, например, дросселем. Транзистор в этом случае работает в классе С с высоким КПД и хорошей термостабильностью, но требует большего напряжения возбуждения, в связи с чем может увеличиться общее число каскадов. Для усиления SSB сигналов (класс АВ) начальное смещение необходимо.



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15] [стр.16] [стр.17] [стр.18] [стр.19] [стр.20] [стр.21] [стр.22] [стр.23] [стр.24]