Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[15]

Рис. 66. Формы сигналов в ограничителе параллельного действия: а - входной; 6 - ограниченный; a - выходной

Рис. 67. Ограничитель последовательного действия

Рис. 68. Формы сигналов на выходах цепей устройства: а - первого ограничителя; б - фазовращателя; в - второго ограничителя; s - фильтра нижних частот (выходной сигнал)

Фазовый ограничитель последовательного действия работает на несколько ином принципе. Входной НЧ сигнал сначала ограничивается по амплитуде, и получившееся прямоугольное напряжение подается на единственную фазосдвигающуго цепочку. Ее фазовый сдвиг изменяется от нуля на очень низких частотах до


180° на высоких. Собственная частота цепочки, на которой фазовый сдвиг составляет 90°, выбирается около 500 Гц. При прохождении через цепочку ограниченного НЧ сигнала гармоники получают фазовый сдвиг около 70... 100° относительно основной частоты. Форма прямоугольного сигнала при этом сильно искажается, и гармоники, ранее формировавшие крутые фронты, теперь образуют выбросы около вершин синусоидального напряжения основной частоты. Эти выбросы срезаются вторым ограничителем. Практическая схема устройства дана на рис. 67. Первый ограничитель содержит резистор R1 и встречно-параллельные диоды VI, V2. Вместо трансформатора в фазовращателе применен фазоинверсный каскад на транзисторе V3, имеющий повышенное входное сопротивление и не шунтирующий первый ограничитель. Подстроечный резистор фазосдвигающей цепочки R5C2 позволяет подобрать ее собственную частоту по наилучшей форме выходного сигнала. Далее сигнал подается на второй ограничитель R6V4V5 и эмиттерный повторитель V6, согласующий высокое сопротивление ограничителя с низким выходным. На выходе устройства включен ФНЧ C6L1C7 с характеристическим сопротивлением 500 Ом.

Формы сигналов в различных точках устройства показаны на осциллограммах рис. 68. По сравнению с ограничителем параллельного действия здесь получается несколько меньшее подавление гармоник, тем не менее форма выходного сигнала (рис. 68, г) близка к синусоидальной.

Рис. 69. Формы выходных сигналовРис. 70. Формы выходных сигналов

устройства по схеме ограничитель-фильтрограничителя последовательного действия

на различных частотахна различных частотах

Для наглядной оценки преимуществ описанного ограничителя по сравнению с обычным было проведено сравнение их выходных сигналов. Результаты сравнения приведены на осциллограммах рис. 69, 70, Обычный НЧ ограничитель получался из устройства, собранного по схеме рис. 67, путем отсоединения первого ограничителя и фазовращателя и подачи входного сигнала на левый по схеме вывод резистора R6. Форма выходного сигнала после ФНЧ на различных частотах показана на рис. 69. При частотах выше 1 кГц она близка к синусоидальной, поскольку нечетные гармоники, возникающие при ограничении, подавляются в ФНЧ. А на более низких частотах искажения весьма велики. При включении двух ограничителей и фазовращателя между ними искажения во всем диапазоне звуковых частот становятся малозаметными, лишь на самых низких частотах (300 Гц) форма выходного сигнала напоминает ограниченную синусоиду.

В заключение раздела необходимо заметить, что при подаче на вход ограничителя сигнала сложной формы, содержащего несколько частотных компонент с разной амплитудой, форма сигнала на выходе будет приближаться не к входной, а к синусоидальной. Это свойство любого ограничителя - сильные частотные компоненты в нем подавляют слабые, и на выходе остается преимущественно одна компонента с максимальной амплитудой.

7. УСИЛИТЕЛИ ВЧ СИГНАЛОВ

Усилитель ВЧ в приемной части трансивера прямого преобразования в принципе не обязателен. Хорошо спроектированный и налаженный тракт приема и без УВЧ может обеспечить чувствительность в несколько долей микровольта. Тем не менее установить УВЧ полезно, во-первых, для улучшения селективности - дополнительные контура или фильтры УВЧ ослабят сигналы внедиапазонных станций и, во-вторых, для улучшения развязки приемного и передающего трактов. Усиление УВЧ во избежание ухудшения реальной селективности не должно превосходить нескольких единиц. На время передачи УВЧ следует запирать или отключать по цепям питания. УВЧ также необходим в случае установки на входе приемника двух-,


трехкоктурного перестраиваемого фильтра, предназначенного для улучшения реальной селективности. УВЧ в этом случае компенсирует потери в фильтре.

УВЧ можно собрать на биполярном транзисторе, но динамический диапазон приемника при этом получается невысоким из-за значительной нелинейности переходной характеристики транзистора. Гораздо лучшие результаты дают полевые транзисторы. Простой, но в то же время достаточно эффективный УВЧ на полевом транзисторе (рис. 71) содержит входной Г-образный двухконтур-ный фильтр L1C1L2C2 и одиночный контур L3C4 в цепи стока. Для снижения усиления и расширения полосы он зашунтирован резистором R2. Если расширять полосу не нужно, а желательно, напротив, повысить селективность, резистор R2 из схемы исключают, а сток транзистора присоединяют к отводу контурной катушки.

Рис. 71. Усилитель ВЧ

Еще большую развязку входа и выхода имеет усилитель на двухзатворном транзисторе (рис. 72). В обоих усилителях можно ввести цепь АРУ, подав отрицательное управляющее напряжение в цепь затвора. В усилителе по схеме рис. 72 управляющее напряжение удобно подать на второй затвор. При его изменении от +9 В до нуля диапазон регулировки достигает 50 дБ. Для диапазона 10 м данные катушек следующие: каркасы диаметром 6 мм, провод ПЭЛ 0,5...0,7. Число витков катушек L2 и 13 - 7, отвод катушки 12 (рис. 71) сделан от 2-го... 3-го витка, число витков L1 - 15. Катушки связи L1 и L4 содержат по 2...3 витка любого более тонкого провода (рис. 72), они наматываются около соответствующих контурных. Коллекторный ток обоих усилителей должен составлять 2...3 мА. Если он больше, увеличивается сопротивление в цепи истока (R2 на рис. 72, аналогичная цепочка в случае необходимости вводится и в усилитель по схеме рис. 71). Дальнейшее налаживание сводится к настройке контуров по максимальной громкости сигнала.

Рис. 72. УВЧ на двухзатворном транзисторе

Усилитель мощности передающей части трансивера можно выполнить как на лампах, так и на транзисторах. Ламповые усилители управляются напряжением и требуют высокого сопротивления нагрузки. Поэтому между каскадами лампового усилителя устанавливают колебательные контуры сравнительно высокой добротности. Часто они настолько узкополосны, что требуют перестройки по диапазону. Зато получается высокое подавление гармоник и других побочных продуктов усиления. В отличие от ламповых транзисторный усилительный каскад имеет низкое входное сопротивление (вплоть до долей ома) и требует низкого сопротивления нагрузки. Это токовый усилитель, и схемы согласования каскадов получаются совсем иными. Транзисторные усилители гораздо широкополоснее ламповых, фильтрация побочных продуктов усиления у них гораздо хуже и требуется применять специальные меры (устанавливать фильтры) для подавления внеполосных излучений.

По режиму работы различают усилители классов А, АВ, В и С. На рис. 73 показан график зависимости анодного (коллекторного, стокового) тока от напряжения на управляющей сетке (базе, затворе). В классе А рабочую точку выбирают на линейной части характеристики. При этом получаются наименьшие искажения сигнала, но КПД усилителя низок из-за значительного тока покоя i0. По мере увеличения смещения и амплитуды входного



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15] [стр.16] [стр.17] [стр.18] [стр.19] [стр.20] [стр.21] [стр.22] [стр.23] [стр.24]