Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[27]

Основным элементом таких систем является вакуумный усилитель следящего действия, т. е. механизм, применяющийся в различных приводах автомобильных агрегатов (например, в усилителях привода тормозных механизмов). Возможность применения для автоматизации управления сцеплением механизмов, широко используемых в автомобилестроении, очевидно, явилось одной из основных причин разработки данных систем несмотря на то, что по некоторым показателям они уступают системам автоматизации, обеспечивающим функциональную зависимость Mc=f(ng). Для исключения пробуксовывания сцепления при больших углах а систему управления сцеплением проектируют так, чтобы при таких углах величина Мс была больше М при всех частотах вращения пк (рис. 54, кривые 4 и 8). Наряду с этим при малых и средних значениях а в определенном диапазоне значений пк должно выдерживаться соотношение М>МС (кривые 1 и 5, 2 и 6, 3 и 7). Данное условие является необходимым для обеспечения пробуксовывания сцепления в процессе разгона автомобиля. С ростом угла а увеличиваются частоты вращения пп1, пп2 и пп3, при которых М = МС и, следовательно, прекращается пробуксовывание сцепления (рис. 54, точки А, Б и В). Поэтому чем больше угол а, тем в большем диапазоне величин пк происходит пробуксовывание сцепления. По данному показателю рассматриваемая система управления не имеет отличий от систем с зависимостями Mc = f(n).

Одним из существенных недостатков систем автоматизации с зависимостью Mc = f(a) является неполное включение сцепления при движении автомобиля при малых и средних углах а. Для исключения этого недостатка, создающего неблагоприятные условия работы выжимного подшипника сцепления, в систему управления сцепления вводят дополнительные устройства, вырабатывающие команду на полное включение сцепления при определенной частоте вращения коленчатого вала двигателя или скорости движения автомобиля. Реализация команд обычно обеспечивается клапанными устройствами с электромагнитным приводом, которые действуют параллельно со следящим вакуумным усилителем. Использование рассматриваемой системы не позволяет в полной мере реализовать динамические показатели автомобиля при разгоне в результате быстрого полного открытия дроссельной заслонки. Так как Mc>M, при всех значениях пк произойдет остановка двигателя. По этой же причине у данной системы несколько хуже показатели и с точки зрения обеспечения возможности тро-. гания автомобиля с места на подъеме, а также в тяжелых дорожных условиях.

При автоматическом управлении сцеплением для обеспечения нормального переключения передач необходимо сразу же после подачи команды на переключение быстро выключить сцепление независимо от частоты вращения коленчатого вала (за 0,15 - 0,25 с). После же включения новой передачи должен быть выдержан оптимальный для данных условий эксплуатации темп включения сцепления, который обеспечивал бы без перегрузки трансмиссии требуемую динамику разгона автомобиля. С этой целью в некоторых системах автоматизации управления сцеплением предусматривается изменение темпа включения сцепления в зависимости от разрежения во впускном коллекторе двигателя или положения педали подачи топлива в двигатель, т. е. факторов, характеризующих нагрузку двигателя. Чем выше нагрузка двигателя, тем быстрее должно включаться сцепление.

С учетом изложенного система автоматического управления сцеплением, реализующая зависимость Mc=f(nK), должна удовлетворять следующим основным требованиям:

обеспечивать командными и исполнительными устройствами максимальную быстроту выключения сцепления (за 0,15 - 0,25 с) независимо от частоты вращения коленчатого вала;

осуществлять монотонное увеличение момента, передаваемого сцеплением, по мере повышения частоты вращения коленчатого вала двигателя (в заданном диапазоне частот вращения). При этом режиму холостого хода двигателя должно соответствовать полное выключение сцепления, а после увеличения частоты вращения коленчатого вала до заданного значения должна обеспечиваться блокировка сцепления, исключающая его пробуксовывание;

после! повышения частоты вращения коленчатого вала до заданного значения последующее ее снижение не должно вызывать уменьшения момента, передаваемого сцеплением, до тех пор, пока частота вращения не снизится ниже заданного предела;

при единой для всех режимов движения автомобиля зависимости момента, передаваемого сцеплением, от частоты вращения коленчатого вала двигателя ее пересечение с внешней характеристикой двигателя должно происходить в точке, соответствующей крутящему моменту двигателя, равному 85 - 90 % его максимального значения;

обеспечивать возможность изменения характера зависимости момента, передаваемого сцеплением, от частоты вращения коленчатого вала (при поступлении команд от аппаратуры, управляемой водителем, или срабатывающей автоматически);

после поступления команды на блокировку сцепления продолжительность ее реализации должна составлять 1 - 1,5 с;

темп включения сцепления после переключения передач должен зависеть от режима движения автомобиля и нагрузки двигателя. Кроме выполнения указанных требований, система автоматического управления сцеплением должна иметь высокую надежность и минимальную стоимость. Минимальными также должны

быть масса и размеры электронного блока системы управления. Автоматически действующее сцепление может быть использовано в автомобиле и как самостоятельный узел, и как составной элемент полуавтоматической или автоматической трансмиссии.


При использовании автоматически действующего сцепления в составе автоматической трансмиссии требования, связанные с изменением характеристики Mc = f(nK) в зависимости от условий работы автомобиля, как правило, являются обязательными для обеспечения высокого технического уровня такой трансмиссии.

ОСНОВНЫЕ ПРЕДПОСЫЛКИ ПРИМЕНЕНИЯ ЭЛЕКТРОННЫХ СИСТЕМ

Для автоматизации управления сцеплением разрабатывались различные системы. Наиболее перспективными из них являются системы, базирующиеся на использовании стандартного (штатного) фрикционного сцепления автомобиля. Автоматическое управление таким сцеплением возможно, даже если сохранить без изменения серийный силовой агрегат, что экономически наиболее целесообразно.

Для получения заданной функциональной связи между моментом Л1С и частотой вращения пк необходимо на вход системы управления подавать сигнал, зависящий от пк. Выходной сигнал системы управления может быть различным в зависимости от того, на какую управляющую аппаратуру он должен воздействовать. Так, например, если для регулирования момента Мс используется гидроавтоматика, то выходным сигналом системы управления должно быть давление жидкости, а необходимая функциональная связь между Мс и пк может быть в принципе обеспечена путем включения в состав системы управления гидронасоса или центробежного регулятора давления с приводом от коленчатого вала. Если же для регулирования момента Мс используется силовой пневмопривод, то в системе управления должен быть предусмотрен регулятор давления воздуха, приводимый, например, от коленчатого вала.

При использовании для автоматизации управления сцеплением электромагнитных или электромеханических устройств в состав системы управления должен входить преобразователь, выходное напряжение или выходной ток которого являются функцией частоты вращения коленчатого вала двигателя.

Для обеспечения принудительного выключения сцепления в процессе переключения передач независимо от частоты вращения коленчатого вала во всех известных системах автоматического управления сцеплением используется выключатель, встроенный в рычаг переключения передач. Когда водитель, переключая передачи, прикладывает усилие к рычагу переключения, контакты данного, выключателя замыкаются. При этом к источнику питания (бортовой сети автомобиля) подключается электромагнит системы управления, вследствие чего к исполнительному устройству привода сцепления поступает команда на выключение сцепления. Таким образом, в случае гидро- и пневмоавтоматики в составе системы автоматического управления сцеплением необходимо иметь как соответствующий регулятор давления с приводом от коленчатого вала двигателя, так и электромагнит принудительного выключения сцепления. Если же применяется система электроавтоматики, то нет необходимости в центробежном регуляторе давления, так как электромагнит принудительного выключения сцепления может быть одновременно использован и в качестве регулятора давления при условии его подключения к блоку автоматики, в состав которого входит преобразователь частоты входного сигнала в напряжение (ПЧН) или в силу тока (ПЧТ).

В большинстве систем автоматизации управления сцеплением используют исполнительные механизмы с пневмо- или гидроприводом. Для управления этими приводами до последнего времени преимущественно применялись различные виды центробежных регуляторов, воздействующих на клапанные устройства. Недостатком применения таких регуляторов (или гидронасосов) является необходимость их привода от коленчатого вала двигателя, что часто затруднительно, а иногда и даже невозможно из-за ограниченности места в моторном отделении двигателя. Кроме того, при использовании регуляторов давления такого типа не обеспечивается получение оптимальных зависимостей Mc=f(fiK) и, в том числе, различный характер их протекания на режимах разгона и замедления коленчатого вала.

Задачи реализации требуемых законов управления решаются относительно просто при использовании электрических и в особенности электронных систем управления для регулирования давления в исполнительных механизмах привода сцепления. Наиболее сложными в системе автоматического управления сцеплением являются те ее элементы, которые обеспечивают получение требуемой зависимости Mc=f(ng). Поэтому целесообразность применения электронной системы управления сцеплением в первую очередь зависит от возможности создания надежной электронной аппаратуры, осуществляющей преобразование входного сигнала (зависящего от частоты вращения коленчатого вала) в силу тока, поступающего в обмотку электромагнита управления исполнительными механизмами привода сцепления.

При выборе типа системы управления следует сопоставить технико-экономические показатели аппаратуры, основанные как на использовании только электронных устройств, так и элементов релейной автоматики в сочетании с электронными комплектующими изделиями. Следует иметь в виду, что вместо одного электромагнитного реле, как правило, приходится использовать электронное устройство, содержащее от 10 до 20 полупроводниковых и других комплектующих изделий. Поэтому экономические преимущества применения чисто электронной системы управления обычно обеспечиваются только при условии ее создания на базе оптимальных схемотехнических решений. Одним из условий реализации таких решений является рациональное использование в электронной аппаратуре интегральных микросхем массового производства.

Электронная система управления при унифицированном ее исполнении может применяться в автомобилях с различными требуемыми законами изменения Mc=f(nK). В этом случае достаточно только изменить настройку


электронной аппаратуры, исходя из условия обеспечения оптимальных условий совместной работы двигателя и сцепления на данной модели автомобиля. Вследствие унификации электронной системы уменьшается ее стоимость.

ЭЛЕКТРОННЫЕ СИСТЕМЫ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ

Системы автоматического управления сцеплением получили наиболее широкое распространение в 50 - 60-х годах. Их особенностью являлось применение сцеплений специальных конструкций, которые легче поддавались автоматизации по сравнению с обычными фрикционными сцеплениями.

Рис. 55. Схема системы автоматического управления сцеплением «Драйв Матик»: а - педаль управления дроссельной заслонкой отпущена, сцепление выключено; б - педаль управления дроссельной заслонкой нажата, сцепление выключено; в - педаль управления дроссельной заслонкой нажата, сцепление включено; 1 - вакуумная сервокамера; 2 - полость сервокамеры; 3 - мембрана; 4 - шток; 5 - рычаг; 6 - трос педали сцепления; 7 - педаль привода сцепления; 8 - педаль управления дроссельной заслонкой; 9 - трос педали привода дроссельной заслонки; 10 - рукоятка переключения передач; 11 - рычаг переключения передач; 12 - датчик скорости; 13 - электронный блок; 14 - потенциометр, id - отверстие для впуска воздуха; 16 и 26 - электромагниты; 17 - шланг; 18 и 20 - элементы золотника; 19 - золотник; 21 - полость золотника; 22 и 23 - каналы; 24 - воздушный клапан; 25 - вакуумный клапан; 27 - ресивер; 28 - обратный клапан; 29 - впускной коллектор двигателя; 30 - шланг

Широкое применение получили центробежные сцепления, а также электромагнитные (фрикционные и из порошковых материалов), имеющие сравнительно простые релейные схемы управления. Недостаток автоматически действующих сцеплений - невозможность использования унифицированного силового агрегата. В конце 70-х годов за счет применения электронных систем оказалось возможным относительно простыми средствами автоматизировать работу обычного фрикционного сцепления. Следует, однако, отметить, что системы автоматизации управления сцеплением пока что носят единичный характер. В качестве примера такой системы можно указать на выпускаемую в ФРГ систему управления «Драйв Матик». Эта система обеспечивает автоматизацию управления обычным фрикционным сцеплением. Ее комплектуют только из навесных узлов, благодаря чему ее применение не связано с изменением конструкции серийных агрегатов автомобиля.

Исполнительным механизмом системы (рис. 55) является вакуумная сервокамера 1 с мембраной 3, шток 4 которой через трос 6 воздействует на педаль 7 привода сцепления, осуществляя регулирование момента Мс. Кроме того, шток 4 через приводной рычаг 5 связан с первым подвижным элементом 18 кольцевого золотника



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15] [стр.16] [стр.17] [стр.18] [стр.19] [стр.20] [стр.21] [стр.22] [стр.23] [стр.24] [стр.25] [стр.26] [стр.27] [стр.28] [стр.29] [стр.30] [стр.31] [стр.32] [стр.33] [стр.34] [стр.35] [стр.36] [стр.37] [стр.38] [стр.39] [стр.40] [стр.41]