Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[2]

-►

-►

Рис. 0.1: Сортировка вставками

Реализация

Реализацию сортировки вставками на Си вы найдете в разделе 4.1. Оператор typedef T и оператор сравнения compGT следует изменить так, чтобы они соответствовали данным, хранимым в таблице.

2.2 Сортировка Шелла

Метод, предложенный Дональдом Л. Шеллом, является неустойчивой сортировкой по месту. Эффективность метода Шелла объясняется тем, что сдвигаемые элементы быстро попадают на нужные места. Среднее время для сортировки Шелла равняется O(n125), для худшего случая оценкой является O(n15). Дальнейшие ссылки см. в книжке Кнута

На рис. 2.2(a) был приведен пример сортировки вставками. Мы сначала вынимали 1, затем сдвигали 3 и 5 на одну позицию вниз, после чего вставляли 1. Таким образом, нам требовались два сдвига. В следующий раз нам требовалось два сдвига, чтобы вставить на нужное место 2. На весь процесс нам требовалось 2+2+1=5 сдвигов.

На рис. 2.2(b) иллюстрируется сортировка Шелла. Мы начинаем, производя сортировку вставками с шагом 2. Сначала мы рассматриваем числа 3 и 1: извлекаем 2, сдвигаем 3 на 1 позицию с шагом 2, вставляем 2. Затем повторяем то же для чисел 5 и 2: извлекаем 2, сдвигаем вниз 5, вставляем 2. И т.д. Закончив сортировку с шагом 2, производим ее с шагом 1, т.е. выполняем обычную


сортировку вставками. Всего при этом нам понадобится 1 + 1+ 1 = 3 сдвига. Таким образом, использовав вначале шаг, больший 1, мы добились меньшего числа сдвигов.

-►

-►

-►

Рис. 0.2: Сортировка Шелла

Можно использовать самые разные схемы выбора шагов. Как правило, сначала мы сортируем массив с большим шагом, затем уменьшаем шаг и повторяем сортировку. В самом конце сортируем с шагом 1. Хотя этот метод легко объяснить, его формальный анализ довольно труден. В частности, теоретикам не удалось найти оптимальную схему выбора шагов. Кнут[1] провел множество экспериментов и следующую формулу выбора шагов (h) для массива длины N:

в последовательности h1 = 1, hs+1 = 3hs+1 + 1,... взять ht, если ht+2 > N. Вот несколько первых значений h:

h2 = (3 х 1) +1 = 4 h3 = (3 х 4) + 1 = 13 h4 = (3 х 13) +1 = 40 h5 = (3 х 40) + 1 = 121

Чтобы отсортировать массив длиной 100, прежде всего найдем номер s, для которого hs > 100. Согласно приведенным цифрам, s = 5. Нужное нам значение находится двумя строчками выше. Таким образом, последовательность шагов при сортировке будет такой: 13-4-1. Ну, конечно, нам не нужно хранить эту последовательность: очередное значение h находится из предыдущего по формуле

hs 1 =[hs /3j

Реализация


Реализацию сортировки Шелла на Си вы найдете в разделе 4.2. Оператор typedef T и оператор сравнения compGT следует изменить так, чтобы они соответствовали данным, хранимым в массиве. Основная часть алгоритма - сортировка вставками с шагом h.

2.3 Быстрая сортировка

Хотя идея Шелла значительно улучшает сортировку вставками, резервы еще остаются. Один из наиболее известных алгоритмов сортировки - быстрая сортировка, предложенная Ч.Хоором. Метод и в самом деле очень быстр, недаром по-английски его так и величают QuickSort к неудовольствию всех спелл-чекеров ("...Шишков прости: не знаю, как перевести"). Этому методу требуется O(n lg n) в среднем и O(n2) в худшем случае. К счастью, если принять адекватные предосторожности, наихудший случай крайне маловероятен. Быстрый поиск не является устойчивым. Кроме того, ему требуется стек, т.е. он не является и методом сортировки на месте. Дальнейшую информацию можно получить в работе Кормена [2].

Алгоритм разбивает сортируемый массив на разделы, затем рекурсивно сортирует каждый раздел. В функции Partition (Рис. 0.3) один из элементов массива выбирается в качестве центрального. Ключи, меньшие центрального следует расположить слева от него, те, которые больше, - справа.

int function Partition (Array A, int Lb, int Ub); begin

select a pivot from A[Lb]...A[Ub];

reorder A[Lb]...A[Ub] such that:

all values to the left of the pivot are <pivot all values to the right of the pivot are > pivot

return pivot position;

procedure QuickSort (Array A, int Lb, int Ub); begin

if Lb < Ub then

M = Partition (A, Lb, Ub); QuickSort (A, Lb, M- 1); QuickSort (A, M + 1, Ub); end;

Рис. 0.3: Быстрый поиск

На рис. 2.4(a) в качестве центрального выбран элемент 3. Индексы начинают изменяться с концов массива. Индекс i начинается слева и используется для выбора элементов, которые больше центрального, индекс j начинается справа и используется для выбора элементов, которые меньше центрального. Эти элементы меняются местами - см. рис. 2.4(b). Процедура QuickSort рекурсивно сортирует два подмассива, в результате получается массив, представленный на рис. 2.4(c).



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15]