Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[7]

пропускания (см. разд. 1.8). Сигнал обратной связи, поступающий на вход усилителя, усиливается и проходит на выход в противофазе с действующим там сигналом. В результате выходной сигнал ослабляется в степени, определяемой глубиной обратной связи.

Пусть при отсутствии обратной связи входной сигнал еът усиливается (коэффициент усиления схемы без цепи обратной связи обозначим буквой Д) и на выходе получается сигнал евыг

еВыж = к-(2.1)

Следовательно, коэффициент усиления схемы без обратной связи, или коэффициент усиления схемы с разомкнутой петлей обратной связи, есть отношение мгновенных значений выходного и входного напряжений сигнала;,

Перед коэффициентом обратной связи 3 ставят знак минус, если обратная связь отрицательна; в схемах генераторов, где используется положительная обратная связь, перед (3 ставят знак плюс. Символом А обозначают коэффициент усиления схемы, охваченной обратной связью.

Произведение Л3 называют фактором обратной связи. Величина (1 - Л(3) есть мера глубины обратной связи. Уравнения усиления для схемы с обратной связью имеют вид

А = , А ,„ или А

1-/Ч»1+*р.(2.3)

где А - коэффициент усиления усилителя с обратной связью, А - коэффициент усиления усилителя без обратной связи, Р - коэффициент обратной связи.

Если фактор обратной связи много больше единицы, то величина коэффициента усиления по напряжению практически не зависит от А и для коэффициента усиления по напряжению схемы с обратной связью можно записать следующее выражение:

Поскольку отрицательная обратная связь ослабляет также и искажения сигнала, полезно выразить величину искажений сигнала на выходе схемы. Обозначим относительную величину искажений сигнала на выходе схемы при наличии и при отсутствии обратной связи соответственно DviD; тогда можно записать уравнение

° = --(2.5)

Таким образом, как величина коэффициента усиления сигнала, так и величина его искажений ослабляются одинаково, причем величина ослабления определяется глубиной обратной связи (il - Лр). Если, например, абсолютная величина глубины обратной связи равна 3, а величина коэффициента усиления без обратной связи равна 60, то при наличии обратной связи величина коэффициента усиления составит

1Л-4р = 20.

Соответственно, если относительная величина искажений сигнала составляла 6%, то при действии обратной связи она упадет до 2%:

D = i = 2.

Когда фактор обратной связи много больше единицы (и коэффициент усиления сигнала по напряжению не зависит от А), выходное напряжение евых определяется только значениями токов сигнала, протекающих по сопротивлениям R; и R2, и входного напряжения евх (рис. 2.2). Поэтому в операционных усилителях с высоким коэффициентом усиления при наличии обратной связи выходное напряжение сигнала схемы определяется

следующим выражением:

2.3. Дифференциальные усилители

Схема дифференциального усилителя содержит два транзистора, у которых эмиттеры соединены непосредственным образом (рис. 2.3, aj. К общей точке объединенных эмиттеров подключен резистор Я3-Схема имеет два входа и два выхода.

К достоинствам дифференциального усилителя можно отнести большую полосу пропускания, высокую стабильность работы и широкий диапазон применений. Дифференциальный усилитель можно использовать как смеситель для гетеродинирования нескольких сигналов, как ограничитель для ограничения максимальной и минимальной величин сигнала, в качестве модулятора, а также умножителя частот сигнала. Поскольку такой усилитель имеет мало компонентов (отсутствуют конденсаторы и индуктивности), он широко используется в


интегральных микросхемах и часто входит в состав операционных усилителей, описанных в разд. 2.2.

Рис. 2.3. Схемы дифференциальных усилителей.

Возможны несколько вариантов использования этой схемы. В первом варианте (рис. 2.3, а) сигнал поступает только на один из входов (при этом второй вход может быть заземлен). Поэтому, если сигнал поступает на вход транзистора Т1, то усиленный сигнал появится на коллекторе этого транзистора. Как и з схеме с общим эмиттером, входное и выходное напряжения сдвинуты по фазе на 180°. Изменения сигнального тока, протекающего через резистор R3, приводят к незначительному изменению падения напряжения на нем. Так как токи обоих транзисторов Tj и Т2 протекают через резистор R3, то ток транзистора Т2 также будет меняться в соответствии с изменением тока транзистора Т1.

Если, например, на базу транзистора Т1 поступает положительная полуволна входного сигнала, то прямое напряжение на эмиттерном переходе возрастет и ток коллектора транзистора Т1 увеличится. Поэтому падение напряжения на Rj также увеличится и потенциал коллектора станет менее положительным. Это изменение падения напряжения представляет собой отрицательный сигнал, и, следовательно, между входным и выходным напряжениями образуется сдвиг фаз в 180°.

Увеличение тока транзистора Т1 вызовет увеличение (хотя и небольшое) тока через резистор R3 и приведет к небольшому возрастанию потенциала объединенных эмиттеров. В резуль-1ате прямое напряжение на эмиттерном переходе транзистора Т2 уменьшится и ток через Т2 также уменьшится, что вызовет уменьшение


падения напряжения на резисторе R2. Коллектор транзистора Т2 становится более положительным, т. е. на нем появляется сигнал, находящийся в противофазе с сигналом на коллекторе T1. Таким образом, данный усилитель представляет собой парафазный усилитель.

Если выходной сигнал снимается с коллектора транзистора T1, то схема представляет собой однотактный инвертирующий усилитель. Если же выходной сигнал снимается с коллектора Т2, то схему можно рассматривать как однотактный неинвертирующий усилитель.

Сигнал можно подавать на две базы (рис. 2.3,6); в этом случае вход схемы называют дифференциальным /При любой конфигурации схем, показанных на рис. 2.3, снимаемый сигнал пропорционален разности потенциалов на входах усилителя, т. е. разностному (дифференциальному) сигналу. - Прим. ред.]. Выходной сигнал (рис. 2.3, в) можно снимать с коллектора транзистора Т1 или Т2, а также с обоих коллекторов для получения симметричного выхода относительно земли.

Важной характеристикой дифференциального усилителя является характеристика передачи напряжения при действии синфазного сигнала одновременно на оба входа. Если на вход усилителя поступают сигналы помехи, такие, как пульсации источника питания, сигналы наводки, обусловленные влиянием паразитных связей, излучения и т. д., то такие сигналы находятся в фазе на обоих входах, так что на эмиттерном резисторе RZ действует разностный сигнал. Синфазные сигналы взаимно ослабляются, не оказывая заметного воздействия на полезный усиливаемый сигнал. По этой причине дифференциальный усилитель мало чувствителен к наводкам переменного тока. Когда такие наводки появляются на обоих входах одновременно, они взаимно подавляются.

Лучшие характеристики дифференциального усилителя получаются на хорошо подобранной паре транзисторов и коллекторных резисторов. Наилучшей стабильности и оптимальных характеристик можно достичь, если увеличить величину сопротивления общего резистора в цепи эмиттера, поскольку в этом случае этот элемент ведет себя как источник постоянного тока с большим внутренним сопротивлением. В результате ослабляется связь между входными и выходными цепями транзисторов. Однако при этом вследствие большого падения напряжения на Яз необходимо значительно увеличить напряжение источника питания.

Для улучшения характеристик можно использовать отдельный источник тока. Характеристики усилителя тем лучше, чем выше внутреннее сопротивление источника тока. Если в схеме на рис. 2.3, а высокое значение сопротивления источника тока получают путем увеличения R3, то в схеме на рис. 2.3, г этого достигают другим способом. В последнем случае используют дополнительные транзистор и резистор. В схеме на рис. 2.3, г, соответствующей схеме транзистора с ОБ, выходное сопротивление для постоянного тока в коллекторной цепи транзистора Г3 весьма велико - значительно больше R3. Это позволяет уменьшить величину сопротивления Rz, в результате чего уменьшаются падение напряжения и рассеиваемая мощность на R3, а также потребляемая мощность по сравнению с аналогичными параметрами для схемы на рис. 2.3, а.

Известны другие, более .совершенные схемы построения источников постоянного тока. В этих схемах вместо резистора R4 применяют диод со специально подобранными характеристиками, который способен компенсировать изменение смещения транзистора 73, вызываемое нестабильностью температуры.

2.4. Усилитель сигнала выключения канала цветности

В цветном телевизионном приемнике необходимо генерировать поднесущую, которая должна подмешиваться к боковым полосам входных сигналов цветности, передаваемых с учетом требований к спектру сигнала цветности без поднесущей (см. разд. 4.6) [В СССР используются другая система и другой стандарт цветного телевидения. - Прим. перев.].

В черно-белом приемнике отсутствуют генератор поднесущей, полосовые усилители сигналов цветности, а также другие каскады, имеющие отношение к получению цветного изображения; поэтому в таком устройстве при приеме сигналов цветности помех не возникает. Однако при приеме и воспроизведении сигналов черно-белого изображения в цветных телевизионных приемниках могут возникать некоторые нарушения нормальной работы. При прохождении черно-белых сигналов через каскады,, предназначенные для получения цветного изображения, черно-белые тона воспроизводятся плохо. Поэтому необходима специальная схема, которая бы автоматически отключала полосовой усилитель сигналов цветности на время приема сигналов черно-белого изображения. Такая схема изображена на рис. 2.4; ее называют выключателем канала цветности (color killer). Здесь схема на транзисторе Т1 одновременно выполняет функции фазового детектора, ключевого каскада и усилителя. Этот транзистор открыт только в отсутствие сигнала цветовой синхронизации, называемого также сигналом цветовой вспышки (reference burst signal). При открытом транзисторе Т1 падает практически до нуля прямое смещение транзистора полосового усилителя и канал сигналов цветности при приеме сигналов черно-белого изображения, поступающих без сигнала цветовой синхронизации, выключается.

Как показано на рис. 2.4, сигнал цветовой синхронизации подается на трансформатор, состоящий из индуктивных обмоток L1 и L2. Этот сигнал частотой 3,58 МГц поступает на схему фазового детектора. Основные процессы, протекающие в этом каскаде, более полно описаны в гл. 9. В фазовом детекторе сравнивается входной сигнал цветовой синхронизации с сигналом генератора поднесущей. Когда присутствуют оба сигнала,, то в фазовом детекторе устанавливается нулевое смещение базы транзистора Т1, что приводит к запиранию последнего, Установка смещения производится потенциометром R1Ch который регулирует состояние баланса в фазовом детекторе.



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15] [стр.16] [стр.17] [стр.18] [стр.19] [стр.20] [стр.21] [стр.22] [стр.23] [стр.24] [стр.25] [стр.26] [стр.27] [стр.28] [стр.29] [стр.30] [стр.31] [стр.32] [стр.33] [стр.34] [стр.35] [стр.36] [стр.37] [стр.38] [стр.39] [стр.40] [стр.41] [стр.42] [стр.43] [стр.44] [стр.45] [стр.46] [стр.47] [стр.48] [стр.49] [стр.50] [стр.51] [стр.52] [стр.53] [стр.54] [стр.55] [стр.56]