Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[49]

Генератор

Рис. 13.11. Вид сельсина (с) и схема соединения сельсин-датчика и сельсин-приемника (б).

13.13. Дифференциальные сельсины

Дифференциальные сельсины позволяют зафиксировать угол поворота вала, который является разностью углов поворота валов двух других сельсинов. В такой системе один сельсин является сельсин-приемником, а два других - сельсин-датчиками. Дифференциальный сельсин может быть соединен также с двумя другими сельсинами таким образом, что угол поворота его вала будет вычитаться из угла поворота вала одного из сельсин-датчиков. В этом случае разность углов поворота валов двух сельсинов фиксируется относительным углом поворота вала сельсин-приемника, а дифференциальный сельсин служит в качестве сельсин-датчика. Можно сельсины соединить таким способом, что из угла поворота вала дифференциального сельсина будет вычитаться угол поворота вала сельсин-датчика. Разность будет фиксироваться углом поворота вала сельсин-приемника. Как и в предыдущем случае, дифференциальный сельсин служит здесь в качестве сельсин-датчика.

Схематическое изображение дифференциального сельсина показано на рис. 13.12, а. Здесь, так же как в сельсин-датчике и сельсин-приемнике, имеются три обмотки статора Si, 52 и S3. Однако ротор в дифференциальном сельсине имеет не две обмотки, а три. Эти обмотки расположены в пазах ротора на равных расстояниях одна от другой. (На рисунке роторные обмотки обозначены символами Rh R2 и !з.) В зависимости от схемы использования обмотки присоединяются к той или иной обмотке других сельсинов (рис. 13.12,6 - г). Хотя схема соединения одинакова для случаев использования дифференциального сельсина в качестве сельсин-датчика и сельсин-приемника, однако на практике при использовании дифференциального сельсина в качестве сельсин-приемника приходится вводить незначительные конструктивные изменения. Они сводятся к введению демпфирующего устройства для гашения возможных колебаний около правильного положения. Точно так же и обычный сельсин-приемник отличается от сельсин-датчика наличием в нем демпфирующего устройства.

Схема, показанная на рис. 13.12,6, применяется в случае, когда управление сельсин-приемником осуществляется от двух сельсинов - сельсин-датчика и дифференциального сельсина. Валы сельсин-датчика и дифференциального сельсина соединены с механизмами, вращение которых должно обеспечиваться валом сельсин-приемника. Таким образом, положение вала сельсин-приемника будет определяться изменением положения любого из валов - сельсин-датчика и дифференциального сельсина. При повороте этих двух валов вращение вала сельсин-датчика изменяет сигнал, подаваемый на дифференциальный сельсин. Это приводит к повороту вала дифференциального сельсина, вызывающего появление сигнала, который способствует установлению вала сельсин-приемника в синхронное положение. Угол поворота вала сельсин-приемника равен алгебраической разности между углами поворота сельсин-датчика и дифференциального сельсина, т. е. M=(G - D)°. Таким образом, когда дифференциальный сельсин действует как сельсин-датчик, эта операция является вычитанием. Когда дифференциальный сельсин является сельсин-приемником, можно использовать аналогичное уравнение. В этом случае угол поворота вала дифференциального сельсина, используемого в качестве сельсин-приемника, составит D=(G - М)°.


О -

Рис. 13.12. Схематическое изображение дифференциального сельсина (а) и способы включения такого сельсина (б - г).

На рис. 13.12,0 дифференциальный сельсин подключен таким образом, что выполняется операция сложения. Здесь вал сельсин-приемника будет принимать положение, соответствующее равенству М - (G + Z))0.

На схеме рис. 13.12, г дифференциальный сельсин используется в качестве сельсин-приемника, поэтому угол поворота его вала равен сумме углов поворота двух сельсин-датчиков. Таким образом, угловой поворот вала сельсин-датчика, используемого в качестве сельсин-приемника, равен D=(G + M)°. В этом случае также имеет место процесс сложения, как и для схемы на рис. 13.12, в, только дифференциальный сельсин используется здесь в качестве сельсин-приемника, а не сельсин-датчика,

13.14. Электромашинный усилитель - амплидин

Амплидин применяется в сервомеханизмах и в промышленных электронных установках для усиления относительно слабой электрической энергии, подводимой к его обмоткам. По своим характеристикам усиления мощности амплидин, или электромашинный усилитель, значительно превосходит обычные генераторы.

Генератор постоянного тока можно рассматривать как усилительное устройство, так как небольшие изменения тока возбуждения вызывают значительно большие изменения выходного тока.

Коэффициент усиления амплидина существенно превышает усиление, которое можно получить в случае, когда энергия с одного генератора подается в обмотку возбуждения второго, более мощного генератора с целью усиления. Если сравнить обычный генератор с амплидином, то коэффициент усиления по мощности амплидина может иметь значения 25000 - 50000, в то время как усиление обычного генератора постоянного тока находится в пределах примерно 25 - 100. Таким образом, мощность подводимая к обмотке возбуждения амплидина, может составлять всего несколько ватт, а выходная мощность при этом .равна более 20000 Вт.

Схема амплидина изображена на рис. 13.13. Верхняя и нижняя щетки замкнуты накоротко, как показано на рисунке, что обеспечивает протекание больших токов в этой цепи. Следовательно если до замыкания щеток выходной ток был равен 100 А при токе возбуждения ~4 А, то при короткозамкнутых щетках ток возбуждения, равный -0,2 А, будет достаточен для получения той же величины тока 100 А.


Возбуждение Рис. 13.13. Схема амплидина.

Ток короткого замыкания якоря создает сильное поперечное поле- этот эффект называется реакцией якоря. При вращении якоря его обмотки .пересекают это поле, и в них индуцируется напряжение, сдвинутое по отношению к полю возбуждения на 90°. Поэтому для получения максимальной мощности в нагрузке используются дополнительные щетки, сдвинутые по отношению к первым на 90°.

Магнитное поле, обусловленное реакцией якоря, и поле, которое ее вызывает, сдвинуты по фазе на 90°. Управляющее магнитное поле и поле реакции нагрузки отличаются по фазе на 180° Такой фазовый сдвиг вызывает эффект компенсации, который приводит к уменьшению выходной мощности, а его действие можно сравнить с действием обратной связи в усилителях. Эффект компенсации можно минимизировать путем введения специальной компенсирующей обмотки L2. Компенсирующая обмотка обычно располагается на отдельном полюсе и имеет число витков, которое должно обеспечивать компенсацию магнитного поля, обусловленного нагрузкой.

Так как поле возбуждения амплидина можно изменять, это устройство можно использовать для управления скоростью вращения двигателей постоянного тока. Кроме того, амплидин можно применять в качестве возбудителя для другого генератора с целью регулирования последнего. Так как для возбуждения амплидина требуется небольшая мощность, то проблемы стабилизации напряжения амплидина, как правило, не возникает. По этой причине амплидин можно использовать для регулирования напряжения мощных генераторов.

13.15. Схемы с фотоэлементами

Светочувствительные фотоэлементы весьма широко используются во всех областях электроники для преобразования света в электрические сигналы. Они находят применение в киноаппаратуре, промышленных системах контроля, устройствах защиты, в системах регулирования уличного освещения. По краю-кинопленки имеются светлые и темные участки, соответствующие звуковому сопровождению фильма. Свет, проходящий через эти участки, изменяет свою интенсивность. Эти изменения воспринимаются фотоэлементом и . преобразуются в электрические звуковые сигналы, которые затем усиливаются и воспроизводятся динамиком. В промышленных установках присутствие, отсутствие или изменение светового потока вызывают замыкание или размыкание соответствующих реле, которые приводят в действие сервомеханизмы (см. разд. 13.12 - 13.14). В защитных устройствах, например в системах охраны или системах защиты машин, прерывание луча света вызывает подачу сигнала тревоги или выключает рабочий процесс машины. В домашних и уличных системах освещения с наступлением темноты фотоэлемент включает освещение.

Фотоэлементы бывают двух типов: на основе фотоэлектрического и фоторезистивного эффектов. Схема, в которой используется фотоэлемент с фотоэлектрическим эффектом, изображена на рис. 13.14, а. Такой фотоэлемент вырабатывает электрическое напряжение, и до тех пор, пока на него падает свет, в замкнутой цепи протекает ток. В фотоэлементе с фоторезистивным эффектом (рис. 13.14,6) под действием света изменяется сопротивление, а следовательно, и проводимость. Таким образом, для работы схем с фоторезистивным элементом требуется внешний источник напряжения.

Фотоэлементы изготовляют разнообразных типов: в виде вакуумных или газонаполненных ламп, полупроводниковых диодов или транзисторов. Полупроводниковые фотоэлементы, в которых в качестве светочувствительного материала используется селен, работают на принципе фотоэлектрического эффекта. Они имеют высокую чувствительность и находят широкое применение в тех случаях, когда частота изменения светового потока не превосходит 2000 Гц. Фототранзисторы обладают также высокой -светочувствительностью, но могут работать при значительно более высоких частотах по сравнению с селеновыми фотоэлементами. Основным представителем класса фотопроводящих приборов является фотосопротивление. Фотосопротивления изготовляют из сульфида кадмия; они также имеют очень высокую



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15] [стр.16] [стр.17] [стр.18] [стр.19] [стр.20] [стр.21] [стр.22] [стр.23] [стр.24] [стр.25] [стр.26] [стр.27] [стр.28] [стр.29] [стр.30] [стр.31] [стр.32] [стр.33] [стр.34] [стр.35] [стр.36] [стр.37] [стр.38] [стр.39] [стр.40] [стр.41] [стр.42] [стр.43] [стр.44] [стр.45] [стр.46] [стр.47] [стр.48] [стр.49] [стр.50] [стр.51] [стр.52] [стр.53] [стр.54] [стр.55] [стр.56]