Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[43]

При достаточно длительном отсутствии входного сигнала (момент t1) конденсатор С оказывается заряженным до исходного установившегося напряжения 25 В, равного падению напряжения на резисторе R2, полярность напряжения указана на рис. 11.8, а. С приходом первого импульса (момент R) напряжение на резисторе R2 возрастает от исходного установившегося значения до 75 В. Так как передний фронт импульса имеет небольшую длительность по сравнению с постоянной времени заряда С через резистор R3, то практически весь прирост падения напряжения на резисторе R2 передается на резистор Rz, а напряжение на конденсаторе Ci в течение длительности фронта импульса остается неизменным. Таким образом, амплитуда сигнала на резисторе R3 окажется равной разности между амплитудой импульса (75 В) и исходным напряжением на конденсаторе C1 (25 В), т. е. величина амплитуды импульса на R3 составит 75 - 25 = 50 В. Так как постоянная времени CiRs велика по сравнению с длительностью импульса, то за время длительности импульса (от t2 до £з) конденсатор успевает дозаря-диться на небольшую величину. Поэтому напряжение на резисторе R$ уменьшится лишь на эту небольшую величину. Так, если, например, за время длительности импульса напряжение на конденсаторе возрастет до 30 В, то величина выходного импульса понизится на 5 В и в момент tz, как это указано на рисунке, составит 45 В.

Когда импульс на входе снова уменьшится до нуля, напряжение на R2 опять станет равным 25 В (в момент t) Так как теперь напряжение на конденсаторе превышает это значение на 5 В, конденсатор начнет разряжаться через диод Д! и резистор R2, что приведет к появлению на выходе (на базе транзистора Т2) кратковременного отрицательного всплеска, равного небольшому падению напряжения на отпертом диоде Дь Существенным является то, что малое сопротивление отпертого диода шунтирует резистор Rs, вследствие чего резко уменьшается постоянная времени разряда конденсатора. Поэтому весьма быстро незначительный отрицательный выброс выходного напряжения (напряжения на диоде) снижается до нуля, после чего на конденсаторе вновь устанавливается исходный уровень напряжения, равный 25 В. Так как этот уровень является установившимся для интервала времени между импульсами, то в течение этого времени ток через резистор R3 не протекает и, следовательно, на нем нет падения напряжения. Таким образом, осуществляется процесс привязки выходных импульсов к нулевому уровню (прямоугольные колебания с отрицательными и положительными полупериодами на выходе не образуются).

В некоторых случаях возникает необходимость привязки сигнала к заранее заданному уровню напряжения, выше или ниже нулевого уровня. Такая привязка осуществляется при помощи схемы, изображенной на рис. 11.8,6. Здесь фиксированный уровень напряжения подан в точку между соединением резистора Rz с диодом и землей. Этот источник напряжения зашунтирован конденсатором С2 для того, чтобы уменьшить до минимума изменения напряжения сигнала на внутреннем сопротивлении источника. В этой схеме выходной сигнал привязан к; уровню, соответствующему напряжению источника питания. В показанной на рисунке схеме используется источник постоянного напряжения 10 В. Поэтому выходные импульсы будут привязаны к уровню постоянного напряжения, равного 10 В.

Выполняемая схемой функция аналогична той, которая была описана для схемы на рис. 11.8, а. Отличие заключается лишь bi том, что здесь выходные импульсы располагаются выше нулевого уровня на величину, равную напряжению источника. При отсутствии источника восстановленный сигнал имел бы в момент t2 высоту 50 В, так как входные импульсы начинались бы от исходного уровня 25 В и нарастали до 75 В. При подключении же источника 10 В к точке соединения резистора Rs с диодом Д; выходные импульсы амплитудой 50 В смещаются на 10 В и оказываются привязанными к этому уровню.

11.9. Формирование пилообразных сигналов

Схема формирователя пилообразных колебаний изображена; на рис. 11.9. Иногда такую схему называют зарядно-разрядной., так как в ней периодически происходят заряд и разряд выходного конденсатора С1, включенного между коллектором и эмиттером. Вместо n - р - n-транзистора можно использовать р - n - р-транзистор или электронную лампу.

Рис. 11.9. Схема формирователя пилообразного напряжения.

Так как между эмиттером и базой транзистора нет напряжения смещения, транзистор находится в закрытом состоянии. В это время конденсатор С заряжается, причем зарядный ток протекает в направлении, указанном на рис. 11.9 сплошной стрелкой. В результате происходит постепенное нарастание на-лряжения между


коллектором и землей, которое и образует рабочую часть выходного пилообразного напряжения. Начальный участок этого напряжения (до нескольких процентов максимальной величины) практически линейный. При существенно большей величине зарядного напряжения конденсатора дальнейший его заряд происходит по экспоненциальному закону.

Разряд конденсатора начинается в момент открывания транзистора путем подачи на его базу положительного сигнала. Такие сигналы могут представлять собой положительные импульсы, вырабатываемые релаксационным генератором. При воздействии положительных импульсов на базу напряжение на базе относительно эмиттера становится положительным и его действие эквивалентно действию прямого смещения транзистора n - р - n-типа. В результате транзистор открывается и шунтирует конденсатор Сь и начинается разряд конденсатора через небольшое сопротивление транзистора в направлении, показанном на схеме штриховой стрелкой. Выходное напряжение при этом резко спадает, завершая один цикл формирования пилообразного напряжения. Когда входной импульс заканчивается (или сигнал с релаксационного генератора становится отрицательным), транзистор опять закрывается и конденсатор начинает заряжаться, формируя новый цикл пилообразного напряжения. Заряд конденсатора осуществляется через последовательно соединенные резисторы R2 и Rz, сопротивление которых значительно больше сопротивления открытого и обычно насыщенного транзистора. Поэтому постоянная времени заряда конденсатора значительно больше постоянной времени разряда. Постоянная времени цепи разряда определяется величиной емкости конденсатора С1 и малым сопротивлением открытого транзистора.

Переменный резистор R3 позволяет изменять постоянную времени цепи заряда и, следовательно, регулировать амплитуду выходного пилообразного напряжения. В схемах вертикальной развертки осциллографов, телевизионных приемников и в других подобных схемах при помощи резистора R3 регулируют размер изображения по вертикали.

Мгновенное значение напряжения на конденсаторе определяется выражением

ес = Е(1 - e-t/RC),(11.7)

где ес - мгновенное значение напряжения на конденсаторе в процессе заряда; Е - напряжение источника, от которого осуществляется заряд; е - основание натуральных логарифмов, равное 2,718; С - емкость конденсатора, Ф;

t - время, с; R = R2+R3 - зарядное сопротивление, Ом.

11.10 Преобразование пилообразного напряжения в пилообразный ток

При электростатическом управлении лучом в электронно-лучевых трубках, например в осциллографах, отклонение электронного луча осуществляется путем подачи пилообразного напряжения на отклоняющие пластины. Электростатическое поле, образующееся между пластинами, оказывает влияние на электронный луч и обеспечивает его линейное отклонение. В телевизионных трубках для обеспечения кадровой и строчной разверток применяется магнитное поле, управляющее движением электронного луча. Для создания магнитного поля на отклоняющие катушки подается пилообразный ток; при этом магнитное поле изменяется по линейному закону.

Эти особенности поясняются на рис. 11.10. На рис. 11.10, от показано последовательное включение резистора с большим сопротивлением и катушки с небольшой индуктивностью. Если индуктивное сопротивление катушки на частоте, равной примерно частоте пилообразного напряжения, имеет очень малую? величину по сравнению с омическим сопротивлением резистора, то при подаче на вход цепи пилообразного напряжения через катушку будет протекать ток также пилообразной формы.

Если же индуктивное сопротивление катушки больше омического сопротивления резистора (рис. 11.10,6), то при подаче на вход такой цепи пилообразного напряжения форма тока в ней уже не будет пилообразной. Для получения пилообразного тока в этой цепи на ее вход следует подавать напряжение прямоугольной формы.

Когда индуктивное сопротивление катушки и омическое сопротивление рассматриваемой цепи имеют примерно одинаковые величины, как это часто бывает в отклоняющих системах кинескопов, то для формирования пилообразного тока в цепи на ее вход следует подавать комбинированный сигнал в виде суммы прямоугольного и пилообразного напряжений (рис. 11.10, в). Для этого инвертированные прямоугольные импульсы вводятся в пилообразный сигнал. Схема для получения такого комбинированного сигнала изображена на рис. 11.11. Здесь модификация пилообразного напряжения осуществляется в предоконечном каскаде строчной развертки телевизионного приемника.

Как показано на рисунке, сигнал пилообразной формы при-ложен к базе транзистора и базовому резистору R2, соединенному с землей через обмотку выходного трансформатора строчной развертки. Импульсные сигналы с этой обмотки подаются в точку соединения R2 и С1, где складываются с пилообразным сигналом, в результате чего и осуществляется требуемая модификация пилообрааного напряжения. Выходной сигнал в схеме снимается с резистора Rз и, так как схема представляет собой эмиттерный повторитель, имеет ту же самую фазу, что и входной. Далее этот сигнал подается на выходной трансформатор строчной развертки, а затем - на отклоняющую систему.


высокое R -J

катушке

Низа. R

Высокое

Ток 6 катушнв

Среднее Я

Среднее

I i Ток В

катушкз

Рис. 11.10. К вопросу о преобразовании пилообразного напряжения в пилообразный ток.

Выходной, строчный транарорматор

Комбинированный. ~~ сигнал

-\ Г~\ Г" Импульсы

Рис. 11.11. Схема формирования тока пилообразной формы.

Глава 12

РЕАКТАНСНЫЕ СХЕМЫ 12.1. Основная схема с управляемым реактивным сопротивлением

Электронные реактансные схемы, эквивалентные реактивной цепи, можно построить, используя резисторно-емкостные цепи с транзистором, и таким образом получить реактивный элемент, потребляющий либо опережающий, либо запаздывающий ток относительно приложенного к элементу колебательного напряжения; таким напряжением обычно является напряжение на колебательном контуре автогенератора. Если реактансную схему подключить параллельно колебательному контуру автогенератора, то появляется возможность управлять частотой генерации. Управление реактансной схемой в свою очередь осуществляется путем изменения напряжения смещения, подаваемого на ее вход. Таким образом, появляется возможность подстройки частоты автогенератора путем изменения управляющего напряжения смещения.

Специальные полупроводниковые диоды при подаче на них обратного смещающего напряжения обладают



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15] [стр.16] [стр.17] [стр.18] [стр.19] [стр.20] [стр.21] [стр.22] [стр.23] [стр.24] [стр.25] [стр.26] [стр.27] [стр.28] [стр.29] [стр.30] [стр.31] [стр.32] [стр.33] [стр.34] [стр.35] [стр.36] [стр.37] [стр.38] [стр.39] [стр.40] [стр.41] [стр.42] [стр.43] [стр.44] [стр.45] [стр.46] [стр.47] [стр.48] [стр.49] [стр.50] [стр.51] [стр.52] [стр.53] [стр.54] [стр.55] [стр.56]