Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[42]

резистора довольно значительного сопротивления. - Прим. ред.]. Схема на рис. 11,5 а иллюстрирует ограничение сигналов отрицательной полярности. Здесь при подаче на вход биполярных колебаний прямоугольной формы на выходе получают импульсы только положительной полярности. При положительном входном сигнале на диод подается напряжение обратной полярности и диод имеет большое обратное сопротивление, так как находится в закрытом состоянии. Таким образом, во время положительного полупериода входной сигнал будет проходить на выход. Во время действия отрицательного полупериода входных импульсов прямоугольной формы полярность напряжения, приложенного к диоду, будет такой, что последний переходит в открытое состояние. При этом малое сопротивление открытого диода будет шунтировать резистор Ri и выходное напряжение будет близко к нулю. В течение последующих полупериодов процесс будет повторяться и на выходе будут появляться импульсы положительной полярности. Для получения импульсов отрицательной полярности следует направление включения диода изменить на обратное.

/00 0м\

Рис. 11.5. Схемы параллельного диодного ограничителя.

Схема ограничителя параллельного типа с источником фиксированного положительного смещения изображена на рис. 11,5,6. Полярность источника смещения такова, что он поддерживает диод в закрытом состоянии. Для обеспечения требуемого уровня ограничения устанавливается нужная величина напряжения источника смещения. В схеме рис. 11,5,6 диод открывается только в том случае, когда напряжение положительного входного сигнала превысит 3В. Следовательно, если размах колебаний напряжения прямоугольной формы на входе составляет 12В, то выходное напряжение пропорционально входному только в случае, пока последнее не превышает 3В. Если же входной сигнал оказывается выше 3 В, то диод открывается и источник сигналов окажется зашунтированным. При отрицательном сигнале на входе диод закрыт и выходной сигнал пропорционален входному. Таким образом, если полярность напряжения смещения и полярность включения диода противоположны, то сигнал на выходе появится в том случае, когда величина входного сигнала не превышает приложенного напряжения смещения.

Применение смещающего напряжения дает возможность производить ограничение отрицательной или положительной полуволны синусоидальных колебаний. Направление включения диода и полярность смещающего напряжения, показанные на рис. 11.5, в, таковы, что осуществляется ограничение положительной полуволны напряжения: на выходе это напряжение будет иметь плоскую вершину при величинах входного сигнала, которые превосходят уровень смещения. Если напряжение положительной полуволны входного сигнала превысит уровень смещения, то диод открывается и шунтирует сигнал. Пропорциональное же изменение входному сигналу сигнала на выходе будет иметь место, если величина входного сигнала меньше в алгебраическом смысле напряжения смещения.

Для ограничения отрицательной полуволны синусоидальных колебаний необходимо полярность напряжения смещения и полярность включения диода изменить на обратные (рис. 11.5, г). В этом случае напряжение смещения поддерживает диод в закрытом состоянии, кроме интервалов времени, когда входной


сигнал, имеющий отрицательную амплитуду, превышает напряжение смещения и открывает диод.

11.6. Двусторонний ограничитель

Если соединить два ограничителя, как показано на рис. 11.6, а, то получим схему двустороннего ограничителя. При такой схеме ограничиваются и положительная, и отрицательная полуволны синусоидального напряжения, и на выходе получается сигнал в виде колебаний, близких к колебаниям прямоугольной формы. Степень ограничения сигнала можно изменять путем выбора напряжений смещения. Во время положительного полупериода входного напряжения, превышающего положительный уровень смещения, будет открыт диод Дь а во время отрицательного полупериода при таких же условиях открывается диод Д2. Результатом является двустороннее ограничение сигнала.

Для преобразования синусоидального входного напряжения в колебания, имеющие форму, близкую к прямоугольной, можно использовать также транзисторы. Для этой цели транзистор применяется в обычной усилительной схеме, работающей в режиме ограничения. При этом рабочая точка вне областей ограничения находится в линейной части характеристики, что достигается при помощи напряжения смещения. Схема такого типа изображена на рис. 11.6,6. Входной сигнал должен иметь амплитуду, достаточную для перевода транзистора в область отсечки во время одного полупериода и в область насыщения во время другого полупериода. Усилители, работающие в режиме ограничения, иногда называют усилителями, работающими в режиме перегрузки.

Т 7* 1 i-

Рис. 11.6. Схема двустороннего ограничителя.

Во время положительного полупериода транзистор переводится в режим насыщения, при этом увеличение амплитуды входного сигнала не приводит к соответствующему увеличению выходного сигнала. В результате верхняя часть полуволны выходного напряжения становится плоской, как показано на рисунке. В течение некоторой части отрицательной полуволны входного сигнала транзистор переводится в область отсечки, и в течение этого времени полуволна напряжения на выходе также будет иметь плоскую вершину. Таким образом, при перегрузке синусоидальный входной сигнал преобразуется в выходные колебания, близкие по форме к прямоугольным.

11.7. Выравнивание амплитуд

Схема параллельного ограничителя со смещением, показанная на рис. 11.5,6, может использоваться для выравнивания амплитуд (рис. 11.7). В этой схеме установлено положительное смещение, равное 4,5 В. Благодаря этому все входные сигналы,, амплитуда которых превышает 4,5 В, ограничиваются и выходной сигнал не будет превышать 4,5 В. Это происходит потому,, что при положительных амплитудах входного сигнала, превышающих напряжение смещения, диод открывается и оказывает шунтирующее действие. Следовательно, если входные импульсы имеют разные амплитуды, то на выходе будут получаться ограниченные входные сигналы. Например, если амплитуда первого импульса равна 4,8 В, т. е. на 0,3 В превышает


уровень, при котором открывается диод Дь то выходное напряжение равно 4,5В. Этим же уровнем 4,5В будут ограничиваться и последующие импульсы. Конечно, в данной схеме ограничиваются лишь те импульсы, амплитуда которых, как в приведенном примере, превышает уровень 4,5 В. Такие схемы удобно использовать для ограничения выбросов, образующихся при переходных процессах, в результате чего получаются импульсы с одинаковыми амплитудами.

11.8. Схемы фиксации уровня

Многие импульсы имеют какую-нибудь одну полярность - отрицательную или положительную. Этим они отличаются, например, от прямоугольных колебаний, которые так же, как и синусоидальные колебания, содержат полупериоды положительной и отрицательной полярности; напряжения таких сигналов имеют значения выше или ниже нулевого уровня. При усилении импульсных сигналов в обычных транзисторных или ламповых схемах с емкостной связью постоянная составляющая импульсов теряется. Это происходит из-за действия емкостной связи: конденсатор не пропускает постоянной составляющей тока Поэтому при передаче однополярных импульсов через конденсатор на выходе линейной цепи получаются колебания прямоугольной формы без постоянной составляющей напряжения содержащейся в передаваемых импульсах. Во многих случаях требуется восстановить постоянную составляющую, чтобы получить исходные импульсы. Восстановление постоянной составляющей импульсов после их прохождения через цепь с емкостной связью осуществляется при помощи схем фиксации. Эти схемы осуществляют привязку импульсов к некоторому постоянному или нулевому уровню и при необходимости восстанавливают исходные характеристики импульсов. Привязку им-nvibCOB к нулевому уровню также называют восстановлением постоянной составляющей. Фиксация уровня осуществляется путем использования нелинейного элемента - чаще всего путем введения диода в схему (рис. 11.8,а).

veznlUL +

-Г--4,53

Рис. 11.7. Схема выравнивания амплитуд.

Рис. 11.8. Схемы фиксации заданного уровня импульсов.

На рис И 8 а изображен обычный двухкаскадныи усилитель на транзисторах с емкостной связью между каскадами. Для восстановления уровня постоянной составляющей в схему введен шунтирующий диод Д1, соединяющий базу транзистора Т2 с землей.



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15] [стр.16] [стр.17] [стр.18] [стр.19] [стр.20] [стр.21] [стр.22] [стр.23] [стр.24] [стр.25] [стр.26] [стр.27] [стр.28] [стр.29] [стр.30] [стр.31] [стр.32] [стр.33] [стр.34] [стр.35] [стр.36] [стр.37] [стр.38] [стр.39] [стр.40] [стр.41] [стр.42] [стр.43] [стр.44] [стр.45] [стр.46] [стр.47] [стр.48] [стр.49] [стр.50] [стр.51] [стр.52] [стр.53] [стр.54] [стр.55] [стр.56]