Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[33]

Ао-В о-

Перенос

5 * г

Рис. 8.8. Полусумматор (а) и условные обозначения схем ИСКЛЮЧАЮЩЕЕ ИЛИ (б), НЕ (в) и ИСКЛЮЧАЮЩЕЕ ИЛИ-НЕ (г).

Если на .входы схемы ИЛИ поступают два импульса, то они одновременно появятся и на схеме И. Тогда на выходе этой схемы И возникает импульс, который поступает на вход схемы ЗАПРЕТ и закрывает эту схему, препятствуя вводу сигналов от схемы ИЛИ. Следовательно, логика работы данной схемы такова: когда на обоих входах схемы ИЛИ действуют 1, то на выходе «Сумма» появляется 0, а на выходе «Перенос» - 1.

Таблица 8.5

Перенос

этом случае импульс, соответствующий 1, образуется только на выходе «Сумма». Выполняемая логическая операция соответствует правилу двоичного сложения 1 + 1 = 10 (двоичное число два). Поэтому, если на входах А и В действуют единичные сигналы, то выходной сигнал на выходе «Сумма» соответствует 0 (импульс отсутствует), но возникает импульс переноса на выходе «Перенос» представляемый 1 старшего разряда в двоичном числе 10.

Код Грея

Двоичный код


На основе описания данной логической схемы может быть составлена таблица истинности (табл. 8.5), иллюстрирующая операции, выполняемые схемой (полусумматором).

Комбинацию схем ИСКЛЮЧАЮЩЕЕ ИЛИ можно использовать для преобразования кода Грея в двоичный код (рис. 8.9). Код Грея называют также циклическим кодом или кодом с минимальными ошибками. Код Грея широко применяется в вычислительных и управляющих системах, поскольку при этом уменьшаются случайные ошибки в дроцессе работы. Это объясняется тем, что по мере возрастания чисел в коде Грея в некоторый момент времени изменяется только одна цифра. В двоичном коде это не так (табл. 8.6).

В преобразователе, показанном на рис. 8.9, количество логических схем ИСКЛЮЧАЮЩЕЕ ИЛИ равно количеству разрядов преобразуемых чисел. Предположим, что слева в схему вводится число в коде Грея 1010 (01010). [Заметим, что на выходах схем сигнала переноса не образуется (1 + 1=0).] Нуль, цо-ступающий на верхний вход схемы А, передается и на выход, поскольку вход непосредственно соединен с выходом. При подаче 1 на нижний вход схемы А на выходе этой схемы также формируется 1. Но выход этой схемы связан с входом схемы В. Поскольку на нижний вход схемы В сигнал не поступает (подается сигнал, соответствующий нулю), на выходе формируется 1. Эта 1 подается на верхний вход схемы С и так как на нижний вход этой схемы также поступает 1, то на ее выходе получаем 0. Аналогично этому, поскольку на входы схемы D сигналы не поступают (подаются нули) , то на выходе также получается 0. Таким образом, число 1010 в коде Грея преобразуется в двоичное число 1100 (табл. 8.6).

Таблица 8.6

Десятичное число

Двоичный код

Код Грея

Иппульс СЧШ1Ш вания числа в прямом коде

Q Q

Q 0

Q Q

Q Q

ния числа # идрат-коде

Рис. 8.10. Схема считывания двоичного числа в прямом и обратном кодах.

8.9. Представление двоичного числа в прямом HI обратном кодах

В вычислительных машинах часто используются числа в обратном и дополнительном кодах. Так, например, код 0101 является обратным кодом двоичного числа 1010, а 1010 - обратный код числа 0101 и т. д., т. е. процесс преобразования прямого кода в обратный состоит в замене 1 на 0 и 0 на 1 [Указанные здесь операции


преобразования кодов относятся только к отрицательным числам, так как у положительных чисел прямой, обратный и дополнительный коды совпадают. Для получения дополнительного кода числа; следует к его обратному коду добавить единицу младшего разряда числа, - Прим. ред.].

На рис. 8.10 изображена схема .считывания двоичного числа, записанного в триггерах регистра (число триггеров равно числу разрядов двоичного числа), в прямом или обратном коде. Схема состоит из комбинации двухвходовых схем И и ИЛИ. Работой схем И управляют два управляющих импульса, подаваемых на две раздельные шины. На верхнюю шину подается импульс, действующий при считывании числа в обратном коде, а на нижнюю шину поступает импульс, действующий при считывании числа в прямом коде. Каждый триггер связан с парой схем И, причем основной выход триггера Q подается на вход той схемы И, которая связана с нижней шиной, а инверсный выход Q соединен со схемой И, связанной с .верхней шиной.

Пусть производится считывание двоичного числа в обратном коде и какой-нибудь из триггеров находится в нулевом состоянии (Q = 0), тогда Q=l и при подаче управляющего импульса на верхнюю шину срабатывает схема И, связанная с выходом Q=l, а на выходе схемы ИЛИ возникает сигнал 1. Если же в триггере записано число Q = 1, то, поскольку при этом Q = 0, связанная с этим выходом схема И не срабатывает и на выходе схемы ИЛИ фиксируется сигнал ,0.

При считывании числа в прямом коде управляющий импульс подается на нижнюю шину и поэтому сигнал 1 получается на выходах только тех схем И, которые связаны с выходами Q=l; эти значения фиксируются и на выходах соответствующих схем ИЛИ. На выходах же схем И, которые связаны с выходами Q = 0, образуется сигнал 0, который .повторяется и на соответствующих выходах схем ИЛИ.

Глава 9

МОСТОВЫЕ СХЕМЫ 9.1. Мостик Уитстона

Мостовые схемы используются в различных областях электроники для проведения измерений, для целей управления m обеспечения возможности считывания переменных. Вместе с: мостовыми схемами применяются такие чувствительные элементы, как гальванометры, откалиброванные измерительные-приборы и датчики, обеспечивающие в случае разбаланса звуковую или световую сигнализацию.

В измерительной технике мостовые схемы используются для-определения величин сопротивлений, емкостей или индуктивно--стей, а также частоты сигнала. В системах управления мостовые схемы устанавливают наличие разбаланса между двумя: напряжениями, на основе чего вырабатываются сигналы коррекции ошибок. Мостовые схемы могут применяться в источниках питания, а также в некоторых схемах детектирования, как будет .показано в данной главе.

На рис. 9.1 изображена схема мостика Уитстона. В этой схеме резисторы образуют плечи мостовой цепи, в диагональ, включен индикаторный прибор, а к двум другим узлам подводится постоянное напряжение. Такая схема может применяться с источником переменного напряжения и измерителем, работающим на . переменном токе. Однако на постоянном токе можно-использовать только резистивный мостик, поскольку при наличии индуктивности или емкости необходим источник переменного напряжения.

В схеме, показанной на рис. 9.1, a, Rs является стандартным резистором, величина которого известна, a Rx - резистор неизвестной величины. Если мост сбалансирован, величину Rx можно определить непосредственным образом или путем сопоставления со стандартным резистором Rs.

Существует множество состояний равновесия мостика Уитстона, и одно из них показано л а рис. 9.1,6. На этой схеме все резисторы имеют равную величину, поэтому между верхним и нижним зажимами измерителя нет разности потенциалов.. В этом случае стрелка гальванометра или другого индикаторного прибора будет находиться в положении, соответствующем! равновесию (указывает на нуль).

На рис. 9.1, в показано другое состояние равновесия. В этой схеме сопротивления резисторов R} и R2 составляют величины по 100 Ом, а сопротивления резисторов Rs и Rx - по 50 Ом. Вследствие равенства сопротивлений резисторов Ri и R2 приложенное напряжение делится между ними поровну. Аналогично этому напряжение делится поровну между резисторами Rs и Rx, хотя величины их сопротивлений и меньше величин сопротивлений двух других резисторов. Поэтому падение напряжения на R2 равно падению напряжения на Rs, и опять между верхним и нижним зажимами нет разности потенциалов, т. е. Мост уравновешен. В этом случае величина сопротивления Rx равна 50 Ом, что соответствует величине .стандартного резистора.

Еще одно состояние равновесия моста иллюстрируется на рис. 9.1,г. На этой схеме сопротивление резистора Ri в два раза больше сопротивления резистора R2, а сопротивление резистора Rs в два раза больше сопротивления резистора Rx. Вследствие равенства отношений R2/Rx=R}/Rs падения напряжений на R2 и Rx одинаковы, и мост уравновешен.



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15] [стр.16] [стр.17] [стр.18] [стр.19] [стр.20] [стр.21] [стр.22] [стр.23] [стр.24] [стр.25] [стр.26] [стр.27] [стр.28] [стр.29] [стр.30] [стр.31] [стр.32] [стр.33] [стр.34] [стр.35] [стр.36] [стр.37] [стр.38] [стр.39] [стр.40] [стр.41] [стр.42] [стр.43] [стр.44] [стр.45] [стр.46] [стр.47] [стр.48] [стр.49] [стр.50] [стр.51] [стр.52] [стр.53] [стр.54] [стр.55] [стр.56]