Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[29]

направлении, показанном стрелкой; ток течет в обратном направлении. Конденсатор С3 отфильтровывает высокочастотные составляющие однополярных импульсов тока, протекающих через диод, вследствие чего через резистор R2 протекает ток звуковой частоты. Звуковой сигнал через конденсатор С5 поступает на базу первого транзисторного усилителя звуковой сигнал.

Выделяемое на резисторе R2 отрицательное напряжение (его полярность указана на рис. 7.10) через резистор R, ответвляется дчя использования схемой АРГ в качестве напряжения смещения Такое напряжение смещения не должно иметь составляющих сигнала звуковых частот, поэтому резистор fli и конденсатор С4 образуют сглаживающий фильтр, подавляющий колебания звуковой частоты. Емкость конденсатора С4 должна быть достаточно велика для шунтирования составляющих звуковых частот.

Если для функционирования АРГ требуется напряжение смещения положительной полярности, то диод детектора, показанного на рис. 7.10, включается в обратном направлении, что изменяет в свою очередь направление движения электронов и полярность напряжения на резисторе R2. При настройке на мощную станцию образующееся при этом напряжение смещения должно уменьшить коэффициент усиления каскадов. При этом следует учитывать, что если в каскаде усиления на радиочастоте и ПЧ используются я - р - n-транзисторы, то нормальное напряжение смещения, подаваемое в цепь базы, должно быть положительным по отношению к эмиттеру; в случае же использования р-п-р-транзисторов на базу подается отрицательное напряжение относительно эмиттера. Поскольку уменьшение прямого напряжения смещения биполярного транзистора приводит к уменьшению его проводимости, для снижения коэффициента усиления в случае n - р-n-транзисторов регулирующее напряжение смещения, снимаемое с выхода АРГ, должно уменьшать прямое смещение базы транзистора, т. е. делать его менее положительным (см. также гл. 3 и рис. 3.3 и 3.4).

Функционально схема АРГ аналогична схемам АРУ (автоматической регулировки усиления), используемым в телевизионных приемниках (см. разд. 7.9). В схемах АРУ регулируется амплитуда видеосигнала, поэтому термин «автоматическая регулировка громкости» здесь не применим. В некоторых радиоэлектронных устройствах, используемых в промышленности, применяются подобные схемы, однако их называют схемами автоматической регулировки уровня или автоматической регулировки амплитуды сигнала. Функционально они схожи со схемами АРГ и АРУ, которые рассматриваются в данной главе.

7.9. Основная схема АРУ

Схемы АРУ используются в телевизионных приемниках для поддержания постоянного уровня сигнала изображения, установленного регулятором контрастности приемника. Как и в случае схем АРГ, схемы АРУ формируют напряжение смещения в зависимости от уровня сигналов радиочастотной несущей; это напряжение прикладывается к радиочастотным и ПЧ-каска-дам приемника.

На рис. 7.11 изображена наиболее простая схема АРУ. На этой схеме видеосигнал поступает с каскада видеодетектора. При показанной полярности включения диод Д1 проводит ток в направлении, указанном стрелкой, и заряжает конденсатор С1 до максимального значения амплитуды синхроимпульсов, размещаемых на гасящих импульсах. Во время проводящего состояния диода Д1 вследствие весьма малой постоянной времени зарядной цепи происходит быстрый заряд конденсатора Сь По окончании гасящего импульса передаются видеосигналы меньшей амплитуды и диод Д1 оказывается запертым. Так как при запертом диоде постоянная времени разряда RiCi конденсатора С2 весьма велика, то конденсатор остается почти полностью заряженным в течение интервала времени между синхроимпульсами.

Напряжете АРУ

С, + --К-

Гасящий импульс

\ Синхроимпульс

Видеосигнал с детектора

Рис. 7.11. Основная схема АРУ.

Конденсатор C1, весьма медленно разряжающийся через резистор R1, создает на нем падение напряжения указанной на рис. 7.11 полярности. Часть этого напряжения образует напряжение смещения АРУ, которое прикладывается к радиочастотным и ПЧ-каскадам усиления. Величина смещения для принимаемых сигналов среднего уровня может устанавливаться при помощи движка переменного резистора Ri. Так как во время передачи амплитуда синхроимпульсов поддерживается постоянной, то образуемое напряжение смещения имеет


неизменную величину. При настройке на отдаленную станцию с более слабым сигналом амплитуда синхроимпульсов уменьшается и на резисторе Ri образуется отрицательное напряжение смещения более низкого уровня. Это приводит к уменьшению обратного смещения, прикладываемого к радиочастотным и ПЧ-усилите-лям, что вызывает увеличение коэффициента передачи слабого входного сигнала. Если осуществлена настройка на станцию с мощным сигналом, образуется обратное смещение большей величины, в результате чего коэффициент передачи радиочастотных и ПЧ-каскадов понижается. За счет этого обеспечиваются выравнивание амплитуд видеосигналов, подаваемых на кинескоп, и регулировка степени контрастности.

В описываемой системе АРУ настройка на отдаленную станцию вызывает уменьшение напряжения смещения. Такое уменьшение приводит к увеличению коэффициента усиления полевых МОП-транзисторов, работающих в режиме обеднения носителей, когда ток стока протекает при отсутствии смещения, и к уменьшению при увеличении смещения. Для транзисторов других типов увеличение прямого смещения вызвало бы увеличение коэффициента усиления и возрастание тока. Однако для получения лучших характеристик, лучшей стабильности и увеличения чувствительности предпочитают использовать ключевую схему АРУ.

7.10. Ключевая схема АРУ

а С выхода схемы: I раЩзтни.

Рис. 7.12. Ключевая схема АРУ.

Ключевым схемам АРУ отдают предпочтение перед основной схемой, описанной в разд. 7.9, по той причине, что они обеспечивают лучшие, рабочие характеристики. Ключевая схема АРУ характеризуется более высоким отношением сигнал/шум и более быстрой реакцией на изменение амплитуды сигнала. В ключевой схеме АРУ (рис. 7.12) используются два транзистора, один из которых служит в качестве ключа, а другой - как усилитель. При применении n - р - n-транзистора оба импульса, подаваемых на транзистор Т1, должны иметь положительную полярность. Это обусловлено тем, что движок переменного резистора (потенциометра) Ri устанавливается таким образом, что при отсутствии входных сигналов транзистор Т1 заперт. Поскольку к коллектору транзистора не подводится постоянного напряжения для создания отрицательного обратного смещения его коллекторного перехода, необходимого для нормальной работы открытого транзистора, импульс, подаваемый на коллектор, должен иметь положительную полярность. Аналогично этому, если при наличии напряжения прямого смещения, снимаемого с резистора R1, транзистор все же остается закрытым, то для его отпирания на базу транзистора следует подать сигнал положительной полярности. Следовательно, для отпирания транзистора Т1 оба положительных импульса, подаваемых на транзистор, должны поступать одновременно.

Движок потенциометра R1 устанавливается таким образом, чтобы только при воздействии синхроимпульсов, поступающих на базу транзистора Т1, создавалось прямое смещение, достаточное для открывания транзистора при условии, что потенциал коллектора положительный. Поэтому при подаче положительных импульсов на коллектор транзистор TI периодически открывается с частотой гасящих импульсов (15750 Гц для черно-белых приемников и 15734 Гц для цветных). Эмиттерный ток транзистора Т1 поступает на цепь R3,C1, а также ответвляется к базе транзистора Т2, протекая через резисторы R4 и R5 и замыкаясь через резистор R6 и источник +E. Ток, протекающий через Ris, повышает потенциал базы транзистора Т2 и открывает его. Таким образом, периодическое открывание Т1 приводит к появлению импульсов на эмиттерном выходе транзисто--ра, поступающих на цепь R3C1, и на входе транзистора 7Y Эти импульсы усиливаются и подаются на входы УВЧ и УПЧ (вместо двух выходных линий с коллектора и эмиттера при наличии соответствующих развязывающих резисторов можно использовать один вывод).

Так как транзистор АРУ Т1 может проводить только при наличии синхроимпульсов, совпадающих во


времени с импульсами строчной развертки, подаваемыми на коллектор транзистора Ti, то в промежутках между синхроимпульсами он не проводит. Поэтому любые шумовые сигналы, прикладываемые к схеме в промежутках времени между соседними синхроимпульсами, не оказывают воздействия на систему АРУ. Фильтр на выходе транзистора Т1 должен быть рассчитан на частоту горизонтальной развертки; поэтому он может иметь малую постоянную времени, обеспечивающую малую чувствительность АРУ к быстрым изменениям уровня сигнала несущей. Ключевая схема АРУ особенно хорошо подходит для сведения к минимуму флуктуации контрастности изображения, причиной которых являются пролетающие самолеты. Самолеты вызывают многократные отражения сигналов, что приводит к дрожанию изображения на экране телевизора.

При увеличении уровня входного видеосигнала на базу Т1 поступает сигнал большей амплитуды, что вызывает увеличение прямого смещения и проводимости. Вследствие этого для целей регулирования усиления формируется большой выходной сигнал. Более слабый сигнал обеспечивает соответственно меньшее прямое смещение с последующим уменьшением выходного напряжения АРУ.

7.11. Автоматическая подстройка частоты

В телевизионных приемниках ручной подстройкой можно точно установить частоту гетеродина, благодаря чему для определенной станции (программы) обеспечивается получение нужной промежуточной частоты. При переключении телевизора на другую программу может вновь появиться необходимость в точной установке частоты гетеродина для получения оптимального изображения. Устройство, которое устраняет необходимость в точной подстройке после каждого переключения ПТК, называется устройством автоматической подстройки частоты (АПЧ) или автоматической точной подстройки (АТП). На рис. 7.13 приведена основная схема АПЧ.

Выключатель j АПЧ

Рис. 7.13. Схема автоматической подстройки частоты.

При точной настройке частота гетеродина ПЧ изображения равна 45,75 МГц (стандартное значение для современных телевизионных приемников). В схеме, показанной на рис. 7.13, видеосигналы с последнего каскада УПЧ подаются на базу транзистора ti, который их усиливает и направляет на дискриминатор, аналогичный описанному в разд. 7.5. Резонансные схемы между Tj и дискриминатором настраивают на частоту 45, 75 МГц, и, пока частота входного сигнала соответствует этой частоте настройки, напряжение на выходе дискриминатора не появится.

При переключении на другую станцию и некотором смещении частоты гетеродина частота сигналов, поступающих на базу транзистора Т1, уже не соответствует резонансной частоте 45,75 МГц. Поэтому дискриминатор разбалансирован (см. разд. 7.4), и появляется выходное напряжение. Это напряжение используется для корректировки настройки частоты гетеродина: напряжение подают на варакторный диод, выполняющий функции подстроечной емкости, который включен в колебательный контур гетеродина (эта часть схемы описывается в разд. 12.4 и 12.5). После корректировки частоты гетеродина частота сигнала на входе схемы АПЧ настолько близка к 45,75 МГц, что сигнал на выходе дискриминатора практически отсутствует и дальнейшей корректировки не производится. Полярность сигнала, формируемого дискриминатором, зависит от того, находится ли частота поступающего сигнала выше или ниже резонансной частоты, на которую настроена схема дискриминатора.

При помощи специального ключа выход дискриминатора можно шунтировать, чтобы при необходимости точной ручной подстройки корректирующую схему можно было бы отключать. Для получения оптимальных результатов при работе со схемой АПЧ схема дискриминатора должна быть настроена на требуемую резонансную частоту. Такая настройка обеспечивается сердечником между обмотками трансформатора, на что указывает стрелка на рис. 7.13.



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15] [стр.16] [стр.17] [стр.18] [стр.19] [стр.20] [стр.21] [стр.22] [стр.23] [стр.24] [стр.25] [стр.26] [стр.27] [стр.28] [стр.29] [стр.30] [стр.31] [стр.32] [стр.33] [стр.34] [стр.35] [стр.36] [стр.37] [стр.38] [стр.39] [стр.40] [стр.41] [стр.42] [стр.43] [стр.44] [стр.45] [стр.46] [стр.47] [стр.48] [стр.49] [стр.50] [стр.51] [стр.52] [стр.53] [стр.54] [стр.55] [стр.56]