Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[23]

В процессе модуляции средний ток коллектора, поступающий к усилителю класса С от источника питания, не изменяется, поскольку последовательные увеличения тока коллектора,, вызываемые модулятором, уравновешиваются аналогичными: уменьшениями тока коллектора. При 100%-ной модуляции выходная мощность модулятора должна быть равна половине входной мощности усилителя класса С. В этом определении под входной мощностью усилителя класса С понимается произведение постоянного напряжения коллектора усилителя класса С на постоянный ток коллектора. Во время передачи звуковых, музыкальных или видеосигналов глубина модуляции постоянно изменяется вследствие изменений амплитуды, которые имеют место для различных уровней громкости, прикладываемых к входу модулятора. Глубина модуляции определяется отношением мощности модулирующего сигнала к половине входной мощности усилителя несущей.

Если амплитуда модулирующего сигнала слишком велика, это может привести к перемодуляции (рис. 6.2, а). При перемодуляции в течение короткого интервала времени амплитуда несущей падает до нуля, вследствие чего возникают искажения. Поэтому необходимо следить за тем, чтобы пики звукового модулирующего сигнала не приводили к глубине модуляции, превышающей 100%. Если уменьшить глубину модуляции, то (рис. 6.2, б) изменение амплитуды составного сигнала несущей становится менее отчетливым.

Как показано на рис. 6.2, в и г, в процессе амплитудной модуляции для каждой частоты модулирующего сигнала образуются две боковые частоты модуляции радиочастотных сигналов. Поэтому, если несущая имеет частоту 1000 кГц и модулирована сигналом частотой 400 Гц, частота сигнала одной боковой полосы будет на 400 Гц больше частоты несущей, т. е. будет равна 1000,4 кГц, а частота сигнала другой боковой полосы будет на 400 Гц меньше частоты несущей, т. е. 999,6 кГц. Если бы несущая была модулирована сигналом частотой 1000 Гц, сигнал верхней боковой полосы имел бы частоту 1001 кГц, а сигнал нижней боковой полосы - 999 кГц. При наличии в модулирующем сигнале колебаний нескольких частот образуется несколько боковых частот модулированных колебаний.

Изменения амплитуды модулированных колебаний, показанных на рис. 6.1, свидетельствуют об изменении мощности составного сигнала, включающего составляющие боковых полос, В процессе амплитудной модуляции амплитуда колебаний собственно несущей частоты не изменяется, однако мощности сигналов боковых полос изменяются пропорционально уровням амплитуды модулирующего сигнала. В случае модуляции в цепи коллектора мощность сигнала боковой полосы определяется модулятором. Поэтому сигнал, показанный на рис. 6.1, представляет собой сумму несущей и составляющих боковых полос. Если составное колебание с изменениями амплитуды подвергнуть процессу фильтрации для удаления составляющих верхней и нижней боковых полос модуляции, останется сигнал несущей постоянной амплитуды.

В схеме, показанной на рис. 6.1, коэффициент трансформации модулирующего трансформатора выбирается таким образом, чтобы обеспечить согласование выходного импеданса трансформатора с импедансом усилителя класса С. Модулированная несущая прикладывается к параллельному резонансному контуру и передается на вторичную обмотку L2, с которой колебания снимаются для подачи в антенную систему (в случае модуляции при высоком уровне сигнала) или на вход линейного усилителя класса В (при низком уровне сигнала).

6.3. Режим двухтактной AM

На рис. 6.3 показана схема выходного усилителя несущей класса С и модулятора, работающих в режиме двухтактной модуляции. Процесс модуляции идентичен ранее описанному, за исключением того, что двухтактная схема является симметричной, обеспечивает большую выходную мощность и меньшие гармонические искажения радиочастотного и звукового (или видео-) сигналов.

Обратите внимание на то, что линия подачи питания через включенную последовательно вторичную обмотку модулирующего трансформатора соединена со средним отводом индуктивности резонансного контура. Благодаря этому обеспечивается симметрия двухтактной схемы. К верхнему и нижнему отводам катушки индуктивности схемы параллельного резонанса подключены конденсаторы для перекрестной нейтрализации

(гл. 3).

Для улучшения симметрии такой схемы и обеспечения возможности заземления ротора хорошо подходят переменные конденсаторы с разрезными статорами. Заземление ротора уменьшает опасность поражения электрическим током при настройке каскадов усиления мощности класса С. Как обычно, в радиочастотной передающей схеме ДВЧ служит для развязки радиочастотного сигнала. При отсутствии дросселя некоторая часть сигнала попадала бы в схему модулятора и в источник питания, что приводило бы к уменьшению общего уровня мощности радиочастотного сигнала, обеспечиваемого данной системой.


тор несуще) и ёудзер -рте усилители класса С

Двухтактный оконечный усилитель ВЧ класса С

К антеннам или линейному *~ усилителю класса В

>ДВЧ

Двухтактный

Источник звука

Рис. 6.3. Двухтактная схема амплитудной модуляции.

6.4. Ширина полосы ЧМ

В процессе частотной модуляции звуковой модулирующий сигнал вызывает смещение частоты несущей вверх и вниз относительно ее обычной резонансной частоты (называемой также средней частотой) со скоростью, определяемой частотой модулирующего сигнала (см. разд. 15.2). Поэтому при звуковом частотномодулирующем сигнале частотой 500 Гц частота несущей отклоняется вверх и вниз от средней частоты 500 раз в секунду. Величина отклонения зависит от амплитуды модулирующего сигнала. Например, если в случае звукового сигнала 500 Гц несущая отклоняется выше и ниже средней частоты на 15 кГц, то увеличение амплитуды звукового сигнала может увеличить девиацию до 20 кГц по каждую сторону от средней частоты при той же частоте модулирующего сигнала 500 Гц. При еще большем увеличении амплитуды звукового сигнала частота несущей может отклониться на 30 кГц по каждую сторону от средней частоты (при той же частоте модулирующего сигнала). В случае модулирующего сигнала частотой 1000 Гц частота несущей отклоняется выше и ниже средней частоты 1000 раз в секунду, а величина отклонения будет определяться амплитудой модулирующего сигнала частотой 1000 Гц.

Защитная полосаЗащитная полот

130кГц {максимальное значение)

200 кГц

Рис. 6.4 Ширина спектра излучения радиопередающей станции с частотной модуляцией сигналов.

В случае стандартного ЧМ-радиовещания (88 - 108 МГц) максимально допустимая девиация, установленная Федеральной комиссией связи (США), составляет 75 кГц по каждую сторону от средней


частоты. Поэтому максимальная девиация частоты равна 150 кГц. Выше и ниже этой максимальной девиации отводятся две боковые полосы по 25 кГц, служащие для защиты от паразитного проникновения сигналов соседних по частоте станций, которые могут создать помехи данной станции. На рис. 6.4 показан спектр полосы частот одной станции с частотной модуляцией. ЧМ-канал звукового сопровождения в телевещании имеет гораздо меньшую ширину полосы (50 кГц) при максимальной девиации 25 кГц по каждую сторону от средней частоты.

6.5. Коэффициенты частотной модуляции

На рис. 6.5 показаны временные диаграммы ЧМ-колебаний несущей и колебаний звукового модулирующего сигнала одной частоты. В моменты, когда величина звукового модулирующего сигнала принимает нулевое значение, частота ЧМ-несущей равна средней частоте.

Рис. 6.5. ЧМ-несущая и модулирующий сигнал.

Как и в процессе амплитудной модуляции, при частотной модуляции образуются боковые полосы. Однако если при AM частота каждой составляющей звукового модулирующего сигнала вызывает появление двух боковых частот, то при ЧМ частоте каждой составляющей звукового модулирующего сигнала соответствует ряд боковых частот. Боковые частоты отстоят друг от друга на частоту, равную частоте модулирующего сигнала. Поэтому, если для модуляции используется сигнал частотой 1 кГц, первые две боковые частоты отстоят от несущей на 1 кГц, причем одна боковая частота находится выше, а другая - ниже несущей. Следующая пара боковых частот будет отстоять от соседних с ними еще на 1 кГц. Боковые частоты, ближайшие к несущей частоте, имеют наибольшую амплитуду, поэтому для последующего процесса детектирования в приемнике имеет значение только несколько боковых частот по каждую сторону от несущей. В стандартном ЧМ-радиовещании следует учитывать до восьми боковых частот, образованных в процессе модуляции. Это основывается на отношении девиации несущей к уровню звукового сигнала.

Для частотной модуляции отношение отклонения (девиации) частоты несущей к частоте модулирующего сигнала, вызывающего девиацию частоты несущей, называется индексом модуляции (не путать с коэффициентом девиации, речь о котором пойдет ниже). Индекс модуляции ггу определяется отношением

где AfH - девиация частоты несущей и т"м - частота модулирующего сигнала.

В отличие от индекса модуляции коэффициент девиации определяется максимальными значениями девиации частоты и частоты модулирующего сигнала: Коэффициент девиации *=

Максимальная девиация частоты несущей = Наивысшая частота модулирующего сигнала *

Для любого индекса модуляции от 1 до 10 число имеющих значение боковых полос может быть найдено из

следующей таблицы:

Число боковых

Индекс модуляции

полос по каждую сторону от несущей



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15] [стр.16] [стр.17] [стр.18] [стр.19] [стр.20] [стр.21] [стр.22] [стр.23] [стр.24] [стр.25] [стр.26] [стр.27] [стр.28] [стр.29] [стр.30] [стр.31] [стр.32] [стр.33] [стр.34] [стр.35] [стр.36] [стр.37] [стр.38] [стр.39] [стр.40] [стр.41] [стр.42] [стр.43] [стр.44] [стр.45] [стр.46] [стр.47] [стр.48] [стр.49] [стр.50] [стр.51] [стр.52] [стр.53] [стр.54] [стр.55] [стр.56]