Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[12]

Усиленный выходной ток УПЧ со стока транзистора Т; поступает на резонансный контур, образованный конденсатором Cs и катушкой индуктивности L;. Последняя имеет подстроеч-ный сердечник, поэтому эти каскады можно точно настраивать по максимуму коэффициента передачи. Резистор Re и конденсатор С6 образуют развязывающий фильтр, который осуществляет развязку цепей усилителя по питанию,(см. разд. 1.6).

Усиленный в рассматриваемом каскаде сипнал поступает на следующий каскад УПЧ, характеристики которого аналогичны первому каскаду.

3.4. ВЧ-усилитель

Усилители высокой частоты класса А иногда применяют в качестве входных каскадов приемников, используемых в связи, для усиления сигнала, повышения избирательности, чувстви-телыности устройства и отношения сигнал/шум. Так как этот каскад имеет дополнительную цепь для подключения сигнала автоматической регулировки громкости, то стабильность уровня выходного сигнала в приемниках с таким каскадом выше, Иногда данный усилитель .называют резонансным усилителем, поскольку для каждой принимаемой станции колебательный контур усилителя настраивают в резонанс с принимаемым сигналом. В рассмотренных ранее УПЧ резонансные цепи при приеме сигналов различных станций остаются настроенными на одну и ту же частоту.

Рис. 3.3. Телевизионные УПЧ видеосигналов, в которых используются ПТ с изолированным затвором в режиме обогащения.

Типичная схема УВЧ показана на рис. 3.4, а. Конденсаторы переменной емкости Ci и С5 имеют общий регулятор, и каждый из них с соответствующей индуктивной катушкой образует параллельный резонансный контур с высоким импедансом. Входная резонансная цепь представляет собой антенную систему; ее можно выполнить ib виде высоко добротного ферритового стержня, на который намотана катушка индуктивности (loopstick). Этот стержень служит антенной. В качестве последней в переносных приемниках может применяться вертикальный штырь. Для согласования с низким входным сопротивлением участка база - эмиттер высокий импеданс входного контура понижают, применяя трансформаторную связь. Аналогично для согласования относительно низкого импеданса цепи коллектора с высоким импедансом параллельного резонансного контура коллектор подключают лишь к части витков катушки индуктивности L3.

Прямое смещение эмиттерного перехода транзистора создает напряжение АРГ, прикладываемое через резистор Rj к базе. Конденсатор С3 отфильтровывает переменные составляющие напряжения АРГ, в то время как конденсатор С2 предотвращает закорачивание базы по постоянному току через малое сопротивление катушки индуктивности L2. При изменении напряжения АРГ меняется усиление каскада, причем для различных по величине сигналов двух станций соответствующие уровни усиления устанавливаются таким образом, чтобы громкость сигналов этих станций была одинаковая (см. гл. 7).

Обратное смещение коллекторного перехода (положительное для транзистора n - р - n-типа) подается так, как показано на рис. 3.4, а. Цепь R2C4 ослабляет влияние изменений температуры на рабочие характеристики транзистора. Ток эмиттера, протекая через резистор Rz, создает падение напряжения, полярность которого совпадает с полярностью источника питания. Поэтому напряжение коллектор - эмиттер меньше напряжения источника на величину этого падения напряжения. Если изменение температуры вызывает увеличение тока транзистора, то падение напряжения на R2 увеличится, что приведет к уменьшению напряжения коллектор - эмиттер на такую же величину, а следовательно, и к уменьшению тока транзистора.


Высокочастотный ток сигнала протекает в основном через конденсатор С4, поэтому напряжение сигнала на R2 мало.

Рис. 3.4. УВЧ.

На рис. 3.4, б показана схема УВЧ, собранная на МОП-транзисторе в режиме обогащения с n-каналом. В отличие от схемы, показанной на рис. 3.4, а, здесь источники смещения и питания подключены параллельно резонансным цепям и -поэтому оказывают более сильное шунтирующее действие на резонансные цепи, чем при последовательном включении. Высокочастотный дроссель L4 в цепи источника питания ограничивает ток частоты сигнала, а также уменьшает связь между каскадами через общий источник питания.

Катушка индуктивности L3 и конденсатор переменной емкости С3 образуют последовательный резонансный контур. Низкий импеданс этого контура на частоте резонанса обеспечивает требуемую для нейтрализации обратную связь. Для устранения паразитной генерации подбирают надлежащую связь между выходом ,и входом, регулируя величину емкости С3.

Конденсаторы С2 и С4, шунтирующие цепи питания, предотвращают закорачивание по постоянному току источников питания через катушки индуктивности L2 и L5. Напряжение смешения подается через резистор Яи в некоторых схемах УВЧ для этой цели может быть использован дроссель. Полярность и величина .смещения зависят от типа усилителя и требуемых рабочих характеристик устройства.

3.5. Линейный усилитель класса В

Усилители класса В применяются в лриемно-передающих системах для усиления амплитудно-модулированных (AM) сигналов радиочастоты. Термин «линейный усилитель класса Ь» подчеркивает, что в этом режиме используется линейная часть характеристики транзистора.

Если сигнал модулирован в усилительном каскаде класса U то следующие каскады усилителей класса С не способны усиливать такой сигнал, поскольку у них ток .коллектора отсекается при входном сигнале, равном примерно .половине амплитуды. Поэтому усилители класса С не способны воспроизвести все компоненты модуляции несущей и для усиления таких сигналов их не применяют. В транзисторном же усилителе класса В


надлежащим смещением рабочая точка устанавливается вблизи точки отсечки, и в этом режиме работы ток коллектора определяется только полупериодами входного сигнала одной какой-нибудь полярности. Поскольку в усилителе имеются резонансные контуры, недостающий полупериод входного сигнала воспроизводится благодаря колебательным (фильтрующим) свойствам этих контуров. Для увеличения выходной мощности можно использовать двухтактные схемы усилителей.

Типичная схема линейного усилителя класса В показана на рис. 3.5. Здесь выходной резонансный контур усилителя класса С, который предшествует усилителю класса В, представлен конденсатором С; и катушкой индуктивности Lj. Входные модулированные колебания несущей поступают на входной резонансный контур усилителя класса В через трансформатор, образованный индуктивностями li и L2. Как показано на рисунке, напряжение фиксированного смещения, соответствующего режиму усиления класса В, поступает на нижний вывод входного резонансного контура.

Напряжение на колебательном нонтуре

Смещение

Рис. 3.5. УВЧ класса В (линейный).

Для входных колебаний, изображенных на рис. 3.5, отрицательные полуволны сигнала несущей при отсутствии модуляции имеют амплитуду, равную половине разности входных напряжений транзистора, приводящих к насыщению и к отсечке тока коллектора. Это позволяет увеличивать или уменьшать амплитуду модулированных колебаний относительно уровня несущей до тех пор, пока ток транзистора не выходит за границы области между точкой отсечки и точкой насыщения. На практике уровень несущей устанавливают примерно -в середине линейной части выходной характеристики транзистора.

Так как положительные полуволны сигнала возбуждения .попадают в зону отсечки тока, то коллекторный ток течет только во время действия отрицательных полуволн напряжения входного сигнала (которое суммируется с небольшим отрицательным напряжением прямого смещения). Соответственно, как показано на рисунке, коллекторный ток представляет собой последовательность импульсов различной высоты. Благодаря фильтрующим свойствам резонансного контура, образованного элементами С4 и Lz, недостающие «полуволны восстанавливаются. В результате на выходе усилителя получаются амплигудно-модулированные колебания (рис. 3.5).

Поскольку в рассматриваемом усилителе -амплитуда немодулированных колебаний несущей ограничивается половиной линейной области рабочих характеристик транзистора, такого усиления несущей, как в случае усилителей класса С (разд. 3.6 - 3.8), получить не удается. Поэтому к. п. д. линейного усилителя модулированных колебаний класса В близок к 30% в отличие от к. п. д., равного 65% и достигаемого в обычном усилителе класса В.

Конденсатор переменной емкости С3 устраняет возбуждение каскада (см. разд. 3.1). Как показано на рис.



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15] [стр.16] [стр.17] [стр.18] [стр.19] [стр.20] [стр.21] [стр.22] [стр.23] [стр.24] [стр.25] [стр.26] [стр.27] [стр.28] [стр.29] [стр.30] [стр.31] [стр.32] [стр.33] [стр.34] [стр.35] [стр.36] [стр.37] [стр.38] [стр.39] [стр.40] [стр.41] [стр.42] [стр.43] [стр.44] [стр.45] [стр.46] [стр.47] [стр.48] [стр.49] [стр.50] [стр.51] [стр.52] [стр.53] [стр.54] [стр.55] [стр.56]