Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[20]

Широко известны режимы работы А, В, С. В режиме А коллекторный ток протекает непрерывно на протяжении всего периода усиливаемого сигнала; в режиме В - только в течение полупериода, а в режиме С - ме-нее полупериода усиливаемого сигнала. При использо-вании этих режимов следует иметь в виду, что лучшая линейность и худший КПД получаются при работе в режиме А и, наоборот, худшая линейность и более вы-сокий КПД - при работе в режиме С; очень часто для линейного усиления амплитудно-модулированных сигна-лов используется режим В, несколько уступающий режиму А по линейности усиления, но существенно превосходящий его по энергетическим характеристикам.

По степени напряженности режимы работы делятся на недонапряженный, критический и перенапряженный. Недонапряженный режим реализуется при таких нагрузках и напряжениях возбуждения, когда напряжение на коллекторе в любую часть периода усиливаемого сигнала остается все время выше напряжения насыщения транзистора. Соответствующая этому режиму нагрузочная характеристика, представленная на рис. 5.3,6 прямой Иии..п, не достигает линии критического режима ОК даже при максимальном из возможных (при заданном возбуждении) токах базы. Критический режим является промежуточным между недонапряженным и перенапряженным. В этом режиме напряжение на коллекторе достигает напряжения насыщения, но только в одной точке - при максимальном токе базы. Соответствующая этому режиму нагрузочная характеристика (Киип на рис. 5.3,6) пересекает выходную характеристику транзистора, соответствующую максимальному току базы, в месте ее наибольшей кривизны - при переходе от почти горизонтальной части к участку резкой зависимости 1к(иэк). И наконец, перенапряженный режим, получается, когда транзистор часть периода находится в состоянии насыщения. В этом режиме нагрузочная характеристика, представленная на рис. 5.3,6 прямой ГЩи.п, пересекает линию критического режима ОК еще до достижения током базы своего максимального (при заданном возбуждении) значения. Таким образом, в соответствии с рис. 5.3,6 область ниже прямой Киип - это область перенапряженного режима, а выше - недонапряженного. Перенапряженный режим характеризуется большими значениями КПД, а недонапряженный - меньшими, но недонапряженный, в отличие от перенапряженного, пригоден для линейного усиления. Поэтому нередко встречается сочетание недонапряженного режима и режима В или А, когда на первый план выступает требование линейности усиления, и сочетание перенапряженного режима и режима С (или В), когда необходимо получить высокие энергетические характеристики. Последнее сочетание является необходимым для ключевого режима, для реализации которого требуется еще и быстрое переключение транзистора из состояния отсечки в состояние насыщения и, наоборот, из состояния насыщения в состояние отсечки.

Важной характеристикой транзистора при его работе в составе того или иного устройства является входное сопротивление. Входное сопротивление, как показано в [54], наиболее резко зависит от режима работы устройства и частоты сигнала. В меньшей степени проявляется его зависимость от характера и величины нагрузки усилителя. И наконец, от характера выходного сопротивления источника сигнала входное сопротивление почти не зависит. Индуктивности выводов транзистора в области высоких частот оказывают большое влияние на входное сопротивление, увеличивая его активную и реактивную (с учетом знака) составляющие. При этом коэффициент усиления по мощности всего устройства падает. Вывод о слабом влиянии источника сигнала на входное сопротивление представляется особенно важным для практики, поскольку указывает сравнительно простой путь определения оптимального выходного сопротивления источника сигнала (как комплексно-сопряженного к входному сопротивлению, найденному при любом сопротивлении генератора), с помощью которого уже можно при заданном сопротивлении генератора найти параметры согласующего четырехполюсника [55].

Таким образом, в общих чертах мы рассмотрели основные задачи, характеристики, схемы включения транзистора и режимы работы устройств на мощных транзисторах. Материал излагался с позиций применения транзисторов в каскадах усилителей мощности. Это не случайно. Во-первых, как уже отмечалось, усилители мощности служат основой большинства перечисленных устройств. А во-вторых, при использовании на высоких частотах в составе радиопередатчиков усилители в значительной степени определяют параметры передающей аппаратуры и в этой связи заслуживают самого серьезного изучения. Учитывая это и принимая во внимание, что практически любые вопросы реализации ВЧ усилителей мощности имеют самое непосредственное отношение к другим радиотехническим устройствам на мощных транзисторах, остановимся на их изучении более подробно.

5.2. ВЫСОКОЧАСТОТНЫЕ УСИЛИТЕЛИ МОЩНОСТИ

Высокочастотные усилители мощности строят по схеме, содержащей каскады усиления, фильтр и цепи автоматики. Усилители характеризуются номинальной выходной и минимальной входной мощностями, диапазоном рабочих частот, КПД, чувствительностью к изменению нагрузки, уровнем нежелательных колебаний, устойчивостью и надежностью работы, массой, габаритами, стоимостью.

Получаемые в настоящее время максимальные значения выходной мощности на частотах до 100 МГц составляют несколько десятков киловатт. При существенно меньшей мощности, отдаваемой отдельными транзисторами (не более 200 Вт), эти значения достигаются специальными устройствами сложения сигналов, среди которых наиболее распространены делители и сумматоры мощности [46]. Существует множество разновидностей этих устройств [46 - 48, 56]. По величине фазового сдвига их делят на синфазные (с фазовым сдвигом суммируемых сигналов ф=0), противофазные (ф = я), квадратурные (ф = п/2) и др.; по виду исполнения - с распределенными и сосредоточенными элементами; по способу соединения с нагрузкой - на последователь-


ные и параллельные и т. д.

Одним из основных требований, предъявляемых к устройствам сложения сигналов, является обеспечение наименьшего взаимного влияния отдельных модулей, мощности которых суммируются (так называемая развязка модулей). Посмотрим, как выполняется это требование в простом синфазном сумматоре на трансформаторах. Схема такого сумматора на трансформаторах Т4 - Т6 вместе с делителем (на трансформаторах Т1 - ТЗ) и суммируемыми каскадами (на транзисторах VT1 и VT2) без цепей смещения и питания показана на рис. 5.4. Трансформаторы Т4 - Т6 имеют коэффициенты трансформации соответственно 1,1 и 1/V2 (здесь гн - сопротивление нагрузки, ЯБ - балластный резистор, сопротивление которого равно 2гн). При нормальных условиях работы, когда напряжения на коллекторах синфазны и их амплитуды равны, ток в балластном резисторе отсутствует. Трансформатор Т6 приводит к двум последовательно соединенным обмоткам трансформаторов Т4 и Т5 сопротивление 2гн, так что на коллекторе каждого транзистора сопротивление нагрузки составляет гн. Представим теперь, что коллектор транзистора VT2 оказался замкнутым с его эмиттером. В таком случае вторичная обмотка трансформатора Т5 представляет собой крайне малое сопротивление для ВЧ сигнала, так что сопротивление 2гн, приведенное к первичной обмотке трансформатора Т6, полностью приводится ко вторичной обмотке трансформатора Т4, а следовательно, и к коллектору транзистора VT1. Но параллельно VT1 при этом оказывается подключен балластный резистор такого же сопротивления, т. е. несмотря на изменение режима работы, во втором каскаде условия работы первого каскада не изменились - он по-прежнему работает на нагрузочное сопротивление гн. Но, поскольку половина его мощности теперь поступает в балластный резистор, в нагрузке остается только половинная мощность одного каскада, что в 4 раза меньше мощности, отдаваемой усилителем в нагрузку до изменения нормальных условий работы. Чем большее число каскадов используется для получения выходной мощности, тем меньше сказывается изменение условий работы в том или другом каскаде на общей мощности в нагрузке. Например, в усилителе с выходной мощностью 4,5 кВт, получаемой в результате суммирования мощностей 32 транзисторных каскадов, при отказе одного каскада выходная мощность снижалась всего лишь до 4,3 кВт. Таким образом, очень малое взаимное влияние каскадов в устройстве сложения мощностей позволяет, максимально используя усилительные свойства каждого транзистора, обеспечить высокую надежность его работы, а следовательно, безотказную работу усилителя мощности в целом.

т? Ш тч

Рис. 5.4. Схема усилителя со сложением мощности на трансформаторах

Суммирующее устройство выбирается исходя из ха-рактера и условий работы усилителя, поскольку при решении главной задачи - сложения сигналов - можно, используя те или иные особенности конкретного вида сумматора, улучшить другие характеристики усилителя, например ослабить некоторые виды нежелательных колебаний или уменьшить чувствительность к рассогласованию нагрузки.

Удовлетворительная развязка модулей, а также малый уровень нежелательных колебаний третьего порядка, низкая чувствительность к изменению нагрузки и слабое влияние суммируемых каскадов на предварительный усилитель получаются при использовании квадратурных сумматоров мощности. Противофазные сумматоры при удовлетворительной развязке подавляют нежелательные колебания второго порядка. Чередование квадратурных и противофазных устройств сложения, например, когда два модуля складываются противофазно, а объединенные таким образом пары модулей - квадратурно, в значительной степени сочетает достоинства обоих видов суммирующих устройств. По этим причинам квадратурные и противофазные сумматоры и делители мощности, выполненные, например, на длинных коаксиальных или полосковых линиях, трансформаторах, получили широкое распространение в усилителях с выходной мощностью от 10 Вт и выше.

Следующий параметр усилителя - минимальная входная мощность - определяется допустимым уровнем шума и устойчивостью работы и в этой связи зависит от схемы, режима работы и конструкции усили-теля. Влияние шума на чувствительность усилителя объясняется следующим. Известно, что приводимая к входу усилителя мощность шума определяется по формуле Рш = = 4kTFnirjf [57], где k - постоянная Больцмана; Т - абсолютная температура; Fm - коэффициент шума;


Af - ширина полосы частот, в которой определяется

Рш. Но при заданном отношении сигнал/шум Кш на выходе усилителя мощность входного сигнала Рс не должна быть меньше, чем РШКШ. Отсюда следует, что минимально допустимое значение входного сигнала, характеризующее таким образом чувствительность усилителя, определяется как РСтш=4кТРщКшД\ При заданных Кш и Af все входящие в это выражение величины известны, за исключением Fn. С помощью общеизвестных соотношений нетрудно показать, что в нелинейном усилителе, каким в общем случае является усилитель мощности, при достаточно большом коэффициенте усиления по мощности первого каскада п

где - коэффициент шума первого каскада; ут+1 - отношение коэффициентов усиления мощности шума к коэффициенту усиления мощности сигнала в (т+1)-м каскаде усилителя, содержащего п каскадов. В зависимости от режима работы каскада это отношение определяется по формуле

входящие в эту формулу коэффициенты находятся по таблицам [58]. Например, для четырехкаскадного усилителя мощностью 50 Вт при Fm1 = 6, Y2=1,6, Уз=1,7, Y4=1,9 имеем Ftu=31, что при Кш=120 дБ, Д=20 кГц и 4кТ = 1,62* 10-20 Вт/Гц дает РШ=1*10-14 Вт и Pcmm=10 МВт, т. е. при оговоренных условиях минимально допустимое значение входного сигнала характеризуется напряжением около 1 В на сопротивлении 75 Ом. Заметим, что указанное определение чувствительности справедливо, если на входе усилителя действует сигнал, в котором мощность шума, по крайней мере, на порядок ниже, чем приведенная к входу мощность собственного шума усилителя Рш, так как иначе не будет получено приемлемое отношение сигнал/шум Кш. Если эта разница в величинах шума на входе не соблюдается, то для обеспечения требуемого значения Кш между источниками сигнала и усилителем должна быть установлена селективная цепь, приводящая к необходимому подавлению шума при заданной расстройке от рабочей частоты.

Рис. 5.7. Схема усилителя с выходной мощностью 15 Вт для диапазона частот 2 - 30 МГц

Другим фактором, ограничивающим чувствительность усилителя, является устойчивость. В этом вопросе помимо схемных решений большая роль принадлежит конструктивному выполнению блока, и выбор входного напряжения зависит от соотношения входного сигнала и сигнала, полученного за счет паразитной обратной связи. Усилитель можно считать устойчивым, если разница в уровнях входного сигнала при нормальной его работе и при выключенном напряжении питания выходного каскада не превышает 10 %. Для примера укажем, что такая величина при входном напряжении 0,3 В на сопротивлении 75 Ом получается без усложнения с коэфициентом усиления не менее 19 дБ при напряжении питания 12 В. Схема этого модуля с габаритами не более 30X14X5 мм и массой не более 15 г приведена на рис. 5.5. На рис. 5.6 показана схема построенного на



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15] [стр.16] [стр.17] [стр.18] [стр.19] [стр.20] [стр.21] [стр.22] [стр.23] [стр.24] [стр.25] [стр.26]