Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[2]

структуры.

Если распределения эмиттерной и базовой легирующих примесей экспоненциальны, то длины ld и la постоянны для всей структуры. Если же эти распределения можно считать экспоненциальными только вблизи от перехода эмиттера, то выражения (1.5) несколько изменяются и ld и ьа будут характеризовать распределение примесей только вблизи перехода. Очевидно, что la>ld и что для того, чтобы коэффициент инжекции у был как можно ближе к единице, необходимо, чтобы ld и la были по возможности малы. Из (1.5) видно, что чем меньше величины ld и la, тем круче распределения эмиттерной и базовой примесей.

Чтобы эти распределения были более крутыми, необходимо уменьшать глубины эмиттерного и коллекторного переходов и увеличивать поверхностную концентрацию эмиттерной и базовой легирующих примесей.

Поверхностная концентрация эмиттерной легирующей примеси должна быть по возможности ближе к предельно достижимой концентрации в кремнии. Для фосфора она составляет (0,5-1) *1021 ат/см2. При такой поверхностной концентрации вначале проникновение в кремний идет с очень высоким коэффициентом диффузии, а затем он резко уменьшается (в 10 - 30 раз). В результате концентрация примеси вначале уменьшается вглубь от поверхности очень медленно, а затем спадает особенно резко.

Концентрация базовой легирующей примеси (как правило, это бор), как следует из выражений (1.4) и (1.5), должна быть по возможности более высокой. Однако на практике этот вывод не подтверждается. Выражение (1.4), по-видимому, является не совсем верным. Так, для отношения 1р(хэ)/1п(хэ) были получены выражения, в которых эта величина была пропорциональна:

1„(Хэ)/1п(Хэ) ~ (66W/(63Ld,),(1.6)

где 0б, оэ - усредненные проводимости базовой и эмиттерной области; w - толщина базовой области; lp3 - диффузионная длина дырок в эмиттере у эмиттерного перехода. Согласно (1.6) коэффициент инжекции тем больше, чем меньше проводимость базовой области, т. е. чем меньше концентрация примесей в базе. Поэтому если нужно получить по возможности более высокий коэффициент передачи тока (в ВЧ транзисторах потери на рекомбинацию в базе не имеют существенного значения и определяющую роль для коэффициента передачи тока играет коэффициент инжекции эмиттера), то следует стремиться к уменьшению содержания примесей в базовой области, т. е. к уменьшению поверхностной концентрации базовой примеси. Однако для мощных ВЧ транзисторов особо большие значения статического коэффициента передачи тока не являются необходимыми. По ряду причин следует стремиться не к уменьшению, а к увеличению содержания примесей в базе. Среди этих причин следует отметить необходимость уменьшения сопротивления активной базы уменьшения эффекта оттеснения тока к краю эмиттера и снижения вероятности прокола базы. Поэтому для мощных ВЧ транзисторов поверхностная концентрация базовой примеси является характеристикой которая должна быть оптимизирована. На практике для разных типов приборов данного класса поверхностная концентрация базовой примеси (бора) составляет от 2*1018 до 1019 ат/см3.

Говоря о требованиях к концентрации легирующих примесей в области коллектора (т. е. в исходном материале), надо прежде всего учитывать, что свойства коллекторной области определяют пробивное напряжение коллекторного перехода транзистора: чем меньше концентрация легирующих примесей в коллекторе тем выше будет пробивное напряжение. В то же время с уменьшением содержания легирующих примесей в коллекторе увеличивается его удельное сопротивление и, следовательно, увеличивается падение напряжения на открытом транзисторе. При этом надо учитывать то обстоятельство, что с увеличением удельного сопротивления коллектора падение напряжения на открытом приборе возрастает примерно по линейному закону, а пробивное напряжение растет значительно медленнее. С этим в первую очередь и связано то, что в мощных ВЧ транзисторах напряжение источника питания и зависящее от него пробивное напряжение коллекторного перехода выбираются не слишком высокими. (Для пробивного напряжения - это напряжение от 35 - 45 до 110 - 120 В.)

Концентрация примесей в коллекторной области мощных ВЧ транзисторов вблизи от коллекторного р-п перехода должна составлять для разных типов приборов от 1015 до 5*1015 доноров/см3. Рассмотрим другие электрофизические характеристики.

Время жизни неосновных носителей заряда в эмиттерной области в связи с высокой концентрацией легирующей примеси (и, следовательно, диффузионная длина) настолько мало, что инжекция тока из эмиттера в базу в ряде случаев определяется не всей толщей эмиттерной области, а лишь ее узким слоем, непосредственно примыкающим к переходу эмиттер - база. Практически нет никаких способов как-нибудь регулировать или менять время жизни в эмиттере.

Время жизни неосновных носителей в базе также довольно мало (около 10~7 с). Таким значениям времени жизни соответствуют диффузионные длины в несколько микрометров (до 10). Однако, так как базовая область в мощных ВЧ транзисторах достаточно тонкая и распределение примесей в базовой области таково, что к диффузии неосновных носителей заряда через базу в значительной степени добавляется дрейф, потери на перенос заряда весьма малы и приведенное значение времени жизни оказывается вполне достаточным.

Для НЧ транзисторов время жизни неосновных носителей заряда в коллекторе должно иметь как можно более высокое значение. Дело в том, что на участках выходных вольт-амперных характеристик, близких к области насыщения, переход коллектор - база может находиться под прямым смещением. В коллектор из базы инжектируются неосновные носители заряда, которые вызовут модуляцию, т. е. резкое увеличение проводимости коллекторной области. При этом сопротивление насыщения транзистора существенно снизится, а это обстоятельство для мощных транзисторов является очень важным.


В ВЧ транзисторах даже на частоте около 1 МГц время пребывания транзистора в открытом состоянии не превышает ~0,1 мкс. За это время в коллекторной области типа „, смещенной в прямом направлении, неосновные носители заряда (дырки) пройдут расстояние l~VD/, где d - коэффициент диффузии дырок, который для кремния не превышает 12 см2/с. Таким образом, l в этом случае будет составлять 10 мкм. Для наиболее высоковольтных мощных ВЧ транзисторов толщина высокоомной коллекторной области не может быть меньше, чем 20 - 25 мкм. Поэтому даже на частотах около 1 МГц в этих приборах высокоомная коллекторная область будет модулирована не более чем на 40 - 50%. На более высоких частотах (десятки и сотни мегагерц) модуляция коллектора практически происходить не будет. (Это обстоятельство является, по-видимому, основной причиной того, что сопротивление насыщения ВЧ транзистора на высоких частотах существенно выше, чем на постоянном токе.)

Время жизни в высокоомной коллекторной области ,при не слишком высокой плотности дефектов будет составлять, по крайней мере, несколько микросекунд, и поэтому оно не будет ограничивать модуляцию коллектора.

Итак, для мощных ВЧ транзисторов нет необходимости целенаправленно изменять время жизни неосновных носителей заряда т в различных областях транзисторной структуры.

Подвижность носителей заряда в различных областях транзисторной структуры определяется в первую очередь концентрацией легирующих примесей, и если эта -концентрация в какой-либо области задана, то и зна-яение подвижности практически также определено. Поэтому хотя, например, желательно увеличивать подвижность носителей в базовой области транзистора, но «сделать это, не меняя в ней концентрации примесей, нельзя.

Мы рассмотрели требования к концентрациям легирующих примесей и к их распределению для различных областей структуры мощных ВЧ транзисторов, основанные на требованиях к пробивному напряжению коллектора, статическому коэффициенту передачи тока, -напряжению прокола и сопротивлению насыщения. Если исходить из требований к другим параметрам транзисторов, то в одних случаях можно получить качественно те же требования к электрофизическим характеристикам транзисторной структуры, а в других - требования могли бы оказаться противоположными. Так, вывод о том, что градиент распределения легирующих примесей вблизи от эмиттерного перехода должен быть максимально большим, противоречит требованию об уменьшении емкости эмиттера. Требование об уменьшении удельного сопротивления коллекторной области, необходимое для снижения сопротивления насыщения, противоречит стремлению к уменьшению емкости коллектора. В то же время уменьшение удельного сопротивления коллектора не только снижает сопротивление насыщения транзистора, но и позволяет повысить его рабочий ток. Увеличение концентрации легирующей примеси в базе не только позволяет повысить напряжение прокола, но и уменьшает входное сопротивление прибора и способствует увеличению его рабочего тока. В то же время чрезмерно большое увеличение этой концентрации влечет за собой уменьшение статического коэффициента передачи тока до недопустимо низких значений.

Правильный выбор электрофизических характеристик разных областей транзисторной структуры может быть сделан только в результате оптимизации, проводимой на основе конкретных требований к параметрам мощных ВЧ транзисторов.

1.3. ВЫБОР РАЗМЕРОВ И ФОРМЫ РАЗЛИЧНЫХ ОБЛАСТЕЙ ТРАНЗИСТОРНОЙ СТРУКТУРЫ.

ТИПЫ СТРУКТУР

Требования к параметрам мощных ВЧ транзисторов определяют размеры и форму различных областей их структуры.

Было установлено, что коэффициент инжекции эмиттера и, следовательно, статический коэффициент передачи тока транзисторов с ростом плотности тока снижаются из-за того, что плотность подвижных носителей в базовой области при увеличении плотности тока растет и поэтому увеличивается ее проводимость. Увеличение проводимости базы может быть очень большим. В результате, как это следует из (1.6), коэффициент инжекции эмиттера может снизиться до значения, намного меньшего, чем единица [В работе [4] показано, что в пределе коэффициент инжекции может снизиться до 1/(1+мп/мр) (мп - подвижность электронов, а мр - подвижность дырок)]. При этом статический коэффициент передачи тока снизится до недопустимо малых значений. Вопросу уменьшения коэффициента инжекции у при увеличении плотности тока посвящен ряд работ, в которых получены различные выражения, уточняющие связь у с плотностью тока, но качественный вывод всегда остается в силе. Вывод этот заключается в том, что для увеличения предельного рабочего тока (если под предельным рабочим током понимать то его значение, при котором статический коэффициент передачи тока сохраняет определенное заданное значение) следует увеличивать площадь эмиттера.

С увеличением плотности тока эмиттер перестает инжектировать носители в базу равномерно по всей площади. Так как базовый ток, проходящий под эмиттером параллельно его границе, создает определенное падение напряжения в базе, открывающая эмиттерный переход разность потенциалов оказывается максимальной у периферии и может сильно уменьшаться с удалением от края эмиттера. В соответствии с этим


плотность тока, инжектируемого в базу, оказывается максимальной по периметру эмиттера и может резко уменьшаться под его центральными участками. С ростом средней плотности тока этот эффект оттеснения тока к краю эмиттера становится все более резким и может наступить момент, когда в эмиттере будет работать только узкая полоса, расположенная у его краев. Обратим внимание на то, что с уменьшением коэффициента передачи тока растет базовый ток (при определенном токе эмиттера) и соответственно резче начинает падать открывающий потенциал на эмиттерном переходе при удалении от края эмиттера. Коэффициент передачи тока уменьшается с ростом частоты. Поэтому на высоких частотах эффект оттеснения тока выражен сильнее.

В связи с большим значением этого эффекта утверждение о том, что для увеличения рабочего тока следует увеличивать площадь эмиттера, приходится заменить выводом, согласно которому для увеличения рабочего тока следует увеличивать периметр эмиттера, не меняя его площади. Лишь когда это увеличение само по себе перестает давать эффект или становится технологически невозможным, периметр эмиттера надо увеличивать, увеличивая одновременно и его площадь. Практически этот вывод привел к тому, что одной из основных тенденций конструирования транзисторов стало стремление получать структуры с максимально возможным отношением периметра эмиттера к площади, причем для мощных ВЧ транзисторов это стремление было выражено особенно сильно.

Для мощных транзисторов, рассчитанных на рабочие частоты до 1 - 2 МГц, наиболее часто используются эмиттеры с так называемой гребенчатой структурой. Иногда [5] такое решение используется и в более высокочастотных транзисторах. При увеличении тока и рабочей частоты гребенчатая структура из-за ряда причин (в частности, в связи со снижением устойчивости ко вторичному пробою) начинает терять свои преимущества. Поэтому для мощных ВЧ транзисторов используют структуры других типов. Как правило, эти структуры характеризуются более высоким отношением периметра эмиттера к площади. Эти транзисторы с так называемой overlay (анг. «перекрывать»)-структурой [6]. Эта планарная структура характерна тем, что в базовой области создается не один эмиттер со сложной формой, а большое число простых по форме (квадратных) эмиттеров, образующих прямоугольную матрицу. Расстояние между соседними эмиттерами в этой структуре меньше, чем размер отдельного эмиттера. Поэтому если рассматривать overlay-структуру с квадратными эмиттерами как гребенчатую, зубцы которой разрезаны на квадратные области, то можно считать, что в пределе overlay-структура по сравнению с гребенчатой позволяет удвоить отношение периметра эмиттера и его площади. В транзисторах с такой структурой базовый контакт создается так же, как и в транзисторах с гребенчатой структурой. Что же касается эмиттерных контактов, то они создаются к каждому эмиттеру через отверстие в покрывающей его защитной диэлектрической пленке, а затем все контакты объединяются общей металлизацией, расположенной на диэлектрической пленке и имеющей, как и в приборах с гребенчатым эмиттером, форму гребенки. Однако металлизированная гребенка не везде располагается над эмиттером, а в промежутках между отдельными эмиттерами она лежит над базовой областью, перекрывая ее. Этим и объясняется название «overlay-транзистор».

Существуют также «overlay»-тpaнзисторы с эмиттерами, имеющими не квадратную, а кольцевую форму (рис. 1.5).

Были разработаны также транзисторные структуры,, представляющие собой как бы обращение overlay-структуры: в них эмиттер имел форму сетки, а базовые контакты находились в ячейках сетки и образовывали матрицу. Так как ячейки могли иметь меньшие размеры, чем эмиттерные области в overlay-структуре, то транзисторы с сетчатым эмиттером характеризовались еще большим отношением периметра эмиттера к площади структуры (за счет увеличения числа ячеек).



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15] [стр.16] [стр.17] [стр.18] [стр.19] [стр.20] [стр.21] [стр.22] [стр.23] [стр.24] [стр.25] [стр.26]