Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[51]

Конфигурацию проводников выбирают такой, чтобы исключить отстаивания от основания, в частности, не допускается образование прямых или острых углов. Радиус закругления проводников не должен быть меньше 2 мм.

Изображения проводников наносят на плату следующими способами: фотографическим, т. е. контактным копированием, при котором плата предварительно покрывается светочувствительной эмульсией получаемое при этом способе изображение имеет точ-ность +0,15 мм; способом сеткографии, т. е. продавливанием через сетчатый трафарет кислотощелочноупорной краски, точность изображения +03 мм; способом офсетной печати, при котором кислото-щепочноупорная краска переносится с цинкографического клише на резиновый валик, а с него на плату, точность изображения ±0,2 мм. В бытовой аппаратуре (радиоприемники, телевизоры, магнитофоны и т. п.) обычно используют второй способ.

Наиболее распространенными методами нанесения металлических проводников являются: химический, предусматривающий избирательное удаление металла с предварительно фольгированной платы-комбинированный, представляющий собой комбинацию технологических приемов травления фольгированного диэлектрика с последующей металлизацией монтажных отверстий.

В последние годы получили распространение так называемые аддитивные и полуаддитивные методы изготовления печатных плат, не связанные с травлением фольгированного диэлектрика. Нанесение проводников осуществляют либо чисто химическим наращива- нием (аддитивные платы) или в комбинации с электрохимическим их Нормированием (полуаддитивные платы). Достоинства этих методов - повышенная точность рисунка проводников и равномерная толщина металлизированного слоя. Указанные методы используют в тех случаях когда нужно обеспечить минимальные значения шк-пины проводников и зазоров между контактными площадками (шаг 0125 - 05 мм). Аддитивные и полуаддитивные платы, в частности, применяют при использовании керамических кристаллодержателей (микрокорпусов) без выводов, вместо которых используют контактные площадки на основании кристаллодержателя. Для установки керамических кристаллодержателей применяют платы из вышеуказанных материалов, а также из керамики.

В аппаратуре, построенной на микросхемах первой и второй степени интеграции, наибольшее распространение получили платы с расположением печатных проводников с одной и двух сторон основания.

ю

Рис. 8.7. Межсоединения с помощью металлизации:

а - этапы изготовления четырехслойиой печатной платы методом попарного прессования (1 - исходные двусторонние печатные платы; 2 - спрессованная плата; 3~ готовая плата с металлизированным отверстием); б - соединения путем металлизации сквозных отверстий

Многослойные печатные платы (МПП) представляют собой единый монтажно-коммутационный узел, состоящий из чередующихся слоев токопроводящего и изоляционного материала. Пример трехслойной печатной платы показан на рис. 8.6,6. В пределах каждого слоя МПП подобны односторонним платам. Многослойные платы характеризуются повышенной плотностью монтажа, большой устойчивостью к внешним воздействиям. Они сокращают длину межсоединений, а следовательно, и задержку прохождения сигналов. Этот фактор имеет большое значение, так как при длине соединений в 10 - 15 см время задержки сигнала в печатной плате составляет примерно 1 не, что соизмеримо со временем задержки быстродействующих микросхем. Многослойные печатные платы отличаются от односторонних и двусторонних наличием соединений между большим числом слоев, повышенными требованиями к точности технологических операций и электрическим параметрам. Процесс изготовления Таких плат более сложен.

Межсоединения в МПП осуществляются с помощью механических деталей (пистонов, штифтов, лепестков), печатных проводников и металлизации. Первые два способа из-за трудоемкости и невысокого качества соединений не нашли широкого применения. Наиболее распространен третий способ, при котором межсоединения создаются путем металлизации (попарное прессование, металлизация сквозных отверстий). При попарном прессовании межслойные соединения выполняют на двусторонних платах путем металлизации отверстий. Платы склеивают прессованием, после чего между наружными слоями металлизации создают соединения. Этапы изготовления четырехслойной печатной платы приведены на рис. 8.7,а. Непосредственного соединения, между внутренними слоями нет, оно осуществляется через наружные. Способ попарного прессования сравнительно прост, он позволяет получать надежные соединения и используется при малом числе


слоев.

Изготовление межсоединений путем металлизации сквозных отверстий заключается в следующем. Пакет из заготовок с выполненными проводниками склеивают прессованием. Затем просверливают и металлизируют сквозные отверстия, обеспечивающие соединения схем, расположенных на различных внутренних слоях (рис. 8.7,6). Для увеличения контактирующей поверхности между металлом проводников и металлизацией используется подтравли-вание диэлектрика во внутренних слоях. Изготовление межсоединений путем металлизации сквозных отверстий - наиболее распространенный способ из-за простоты, хорошего качества соединений и высокой технологичности,

На практике иногда совмещают попарное прессование с металлизацией сквозных отверстий.

Число слоев МПП выбирают в зависимости от сложности принципиальной схемы, степени интеграции микросхем и требований к плотности монтажа. Наиболее часто используют платы с четырьмя - восемью слоями, однако число слоев может быть и большим. Каждую функциональную цепь стремятся располагать на от-дечьном слое, например слой питания, слой нулевого потенциала (зёмчи) слой соединений логических элементов. Иногда слои питания и земли выполняют в виде сплошной или сетчатой поверхности, которая одновременно выполняет функцию экрана.

Внутри многослойной печатной платы возгожно создание тонкого слоя резнстивного материала, расположенного между подложкой и слоем фольги. На базе резистивного слоя можно затем формировать необходимые резисторы. Такой метод позволяет уменьшить размеры устройства. ,,,-тп

В связи с тем, что печатные проводники и отверстия в МПП распочагают очень плотно и они имеют малые размеры, необходимо учитывать паразитную емкость и сопротивление проводников. Емкость между соседними проводниками, расположенными парал-лечьно в соседних слоях, может достигать 3 пФ/см. Для ее уменьшения проводники располагают взаимно перпендикулярно. Для этой же цечи иногда увеличивают расстояние между слоями путем испочьзования нескольких слоев склеивающей стеклоткани. Сопро-тнв-ение печатных проводников составляет 2,4 мОм/см, а сопротивление сквозного металлизированного отверстия не превышает 10 мОм/см.

Существуют определенные ограничения плотности размещения входных контактов на многослойных платах. При использовании штыревых контактов, расположенных в несколько рядов, расстоя-ние между штырями должно быть не менее 2,5 мм, а диаметр штыря не должен превышать 0,7 мм. При пленарных выводах контакты располагают в один ряд с шагом 1,25 мм.

С увеличением числа микросхем на печатной плате усложняется ее топология и повышается трудность разработки. При создании плат стоемятся уменьшить число слоев и минимизировать длину соеденительных проводников. Для сложных устройств поиск оптимальной топологии вручную очень затруднителен, поэтому для трассировки плат все шире применяют ЭВМ.

Большая сложность МПП затрудняет контроль качества. Наиболее часто используют методы автоматической проверки на целостность проводников и отсутствие коротких замыкании между ними. Для проверки МПП закрепляют на рабочем столе контрольной установки и к монтажным отверстиям платы прижимают пру-жинящие контакты, подключающие участки рисунка плат к контрольной схеме. Более подробные сведения о печатных платах имеются в [42].

Размешение микросхем, компоновка узлов, ячеек и блоков. Интегральные микросхемы и микросборки на печатных платах, как правило располагают рядами, хотя допускается их расположение в шахматном порядке. Установку и крепление микросхем на плата производят, учитывая легкость доступа к любой из них и возможность замены.

%5 тт

Рис. 8.8. Установка микросхем на печатную плату:

а, б - микросхемы со штыревыми выводами; в - микросхемы с пленарными выводами (1 - микросхема; 2 - основание; 3 - теплоотводящая шина; 4 - прокладка)

Микросхемы со штыревыми выводами при расстоянии между выводами, кратном 2,5 мм, располагают на печатной плате таким образом, чтобы их выводы совпадали с узлами координатной сетки (рис. 8.6,а). Если расстояние между выводами не кратно 2,5 мм, то их располагают так, чтобы один или несколько выводов


совпадали с узлами координатной сетки. При этом микросхемы устанавливают только с одной стороны печатной платы, причем между микросхемами и платой обычно оставляют зазор. Допускается применение изоляционной прокладки из пресс-материалов, которую приклеивают к плате. Примеры крепления рассматриваемых элементов показаны на рис. 8.8,а, б.

%o-ts

Координатная ,GSmxa

ttQ4,5

Ноордунатная сетка

Рис. 8.9. Разметка посадочных мест для микросхем:

а - для штыревых выводов; б - для пленарных выводов

Рис. 8.10. Варианты расположения выводов

RF

ооffffi

lo=>l fgglES

HI гТГ[ J111Л 4 PJIP11 IT Г1111111П1

Е=з1 l£rnl1c=5\Е=Э

fcjJJJJfJ h J i I.......Ц I I л л л I it

Е=я f7~rjileaS

lffi llfilEl

Hi. Ill, i "hit.ii..PJJimj i11P P p P11

Направление Воздушного потока

Рис. 8.11. Установка микросхем с учетом направления воздушного потока

Микросхемы с пленарными выводами припаивают к металлизированным контактным площадкам печатной платы. Варианты их крепления приведены на рис. 8.8,в. Такие микросхемы могут устанавливаться как с одной, так и с двух сторон печатной платы. Микросхемы повышенной степени интеграции (третьей и более) часто устанавливают на теплоотводящее металлическое основание ячейки или индивидуальные радиаторы.

Примеры разметки посадочных мест для микросхем на печатной плате даны на рис. 8.9,а, б. При установке микросхемы первый ее вывод должен быть совмещен с ключом, нанесенным на плату. Выводы на плате могут располагаться как в один ряд (рис. 8.10,а), так и в шахматном порядке (рис. 8.10,6).

Шаг установки микросхем на печатной плате определяется конструктивными параметрами корпуса, числом выводов, требуемой плотностью компоновки, температурным режимом блока. Шаг установки микросхем выбирают кратным 2,5 мм для микросхем с расстоянием между выводами 2,5 мм и кратным 1,25 мм для микросхем с расстоянием между выводами 1,25 мм. Шаг может быть от 15 мм (для корпуса 151.15 - 1) до 70 мм (для корпуса 244.48 - 1).

Основным методом компоновки микросхем считается плоскостной, при котором элементы устанавливают на печатной плате в одной плоскости с одной или двух сторон. Микросхемы в прямоугольных корпусах обычно размещают с учетом направления воздушного потока, как показано на рис. 8.11. Это позволяет создать наилучшие условия для их охлаждения. Используют и другие способы установки микросхем на платах. Так, для микросхем со штыревыми выводами используют объемные конструкции в виде «гармошки», «вафли» и т. п. В первом случае (рис. 8.12,а) применяют гибкую печатную плату, между перегибами которой устанавливают микросхемы. Во втором случае (рис. 8.12,6) микросхемы крепят к жестким платам. Такие конструкции применимы только при облегченном тепловом режиме. В некоторых конструкциях микросхемы крепят на гибком основании из резины («ремне»), которое прошито соединительными проводами (до 250 шт.).



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15] [стр.16] [стр.17] [стр.18] [стр.19] [стр.20] [стр.21] [стр.22] [стр.23] [стр.24] [стр.25] [стр.26] [стр.27] [стр.28] [стр.29] [стр.30] [стр.31] [стр.32] [стр.33] [стр.34] [стр.35] [стр.36] [стр.37] [стр.38] [стр.39] [стр.40] [стр.41] [стр.42] [стр.43] [стр.44] [стр.45] [стр.46] [стр.47] [стр.48] [стр.49] [стр.50] [стр.51] [стр.52] [стр.53] [стр.54] [стр.55]