Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[21]

работы микросхем.

Например, расчеты, уточняющие среднее время задержки, можно производить с помощью коэффициентов, отражающих влияние на значение среднего времени задержки тем пературы «9 и емкости нагрузки Кс:

зд, р, ер (при Taii = ад, р. ср (при Ti) + аа C*» ТЛЬ зд, р. ср (при Сн2) = (зд, р. ср {при СН1) +Кс{Сиз~Ст)-

При этом предполагается линейная зависимость среднего време-ни задержки от указанных факторов.

К числу динамических параметров следует отнести также динамическую помехоустойчивость, характеризующую способность микросхемы противостоять воздействию импульсной помехи, длительность которой соизмерима со средним временем задержки передачи сигнала через микросхему.

Количественно динамическая помехоустойчивость определяется амплитудой и длительностью импульса помехи, но чаще с помощью характеристики (рис. 4.2), отражающей зависимость допустимой амплитуды импульса помехи от длительности этого импульса. Из рисунка видно, что по мере увеличения длительности импульса помехи допустимая амплитуда помехи снижается до уровня максимально-допустимого напряжения статической помехи.

Заметим, что указанные параметры широко используют для характеристики как микросхемы в целом, так и отдельных ее элементов: логических элементов, триггеров и др.

Эксплуатационные параметры характеризуют работоспособность интегральных микросхем в условиях воздействия окружающей среды. К ним относятся: диапазон рабочих температур, допустимые механические нагрузки (вибрации, удары, линейные ускорения), границы допустимого изменения атмосферного давления, наибольшая влажность и некоторые другие.

4.2. ЛОГИЧЕСКИЕ МИКРОСХЕМЫ

Логические микросхемы выполняют операции конъюнкции (И), дизъюнкции (ИЛИ), инверсии (НЕ), более сложные логические операции: И - НЕ, ИЛИ - НЕ4 И т-ИДИ - НЕ и др. Логическая микросхема как функциональный узел может состоять из нескольких логических элементов, каждый из которых выполняет одну-две или более из перечисленных логических операций и является функционально автономным, т. е. может использоваться независимо от других логических элементов микросхемы. Конструктивно логические элементы объединены единой подложкой и корпусом и, как правило, имеют общие выводы для подключения источника питания.

Таблица 4.2 Логическая операция

И

ИЛИ

НЕ

Обозначение логического элемента

Таблица

истинности

Xx

Х2

Y

1

1

1

0

1

0

1

0

0

0

0

0

Xi

Х2

Y

1

1

1

0

1

1

1

0

1

0

0

0

X

Y

1

0

0

1

операция

И - НЕ

И-ИЛИ-НЕ

логического элемента

Таблица

истинности

X1

Х2

Y

1

1

0

0

1

1

1

0

1

0

0

1

X1

Х2

Y

1

1

0

0

1

0

1

0

0

0

0

1

X1X2

Х3Х4

Y

1

1

0

0

1

0

1

0

0

0

0

1

В табл. 4.2 приведены условные обозначения и таблицы истинности некоторых логических элементов. Таблицы истинности показывают, каким будет сигнал на выходе (0 или 1) при той или иной комбинации сигналов на входе. В табл. 4.2 приведены логические элементы с двумя входами. Число входов может быть и большим. При создании какого-либо устройства могут понадобиться логические элементы с разным числом входов. Поэтому в состав серий нередко включают микросхемы, которые содержат логические элементы на 2,

1


3, 4, 6, 8 входов. Поскольку микросхемы выпускают в корпусах с ограниченным числом выводов, например корпус К201.14 - 1 имеет 14 выводов, то и логических элементов, размещаемых в таком корпусе, будет тем меньше, чем больше входов у каждого из них. Например, серия К155, некоторая часть микросхем которой выпускается в указанном выше корпусе, включает следующий ряд логических микросхем: К155ЛА1 - два четырехвхо-довых, К155ЛА2 - один восьмивходовый, К155ЛАЗ - четыре двух-входовых, К.155ЛА4 - три трехвходовых логических элемента.

Рис. 4.3. Базовый элемент РТЛ

Разработка каждой серии цифровых микросхем начинается с базового логического элемента. Так называют элемент, который лежит в основе всех микросхем серии: и логических, и триггеров, и счетчиков и т. д. Как правило, базовые логические элементы выполняют операции И - НЕ либо ИЛИ - НЕ. Принцип лострэгния, способ управления его работой,выполняемая им логическая операция, напряжение питания и другие параметры базового элемента являются определяющими для всех микросхем серии.

По принципу построения базо-вых логических элементов цифровые

микросхемы подразделяют на следующие типы: резистивно-транзи-сторной логики (РТЛ); диодно-транзисторной логики (ДТЛ)- транзисторно-транзисторной логики (ТТЛ) и транзисторно-транзисторной логики с диодами Шотки (ТТЛШ); транзисторной логики с эмит-терными связями (ЭСЛ); транзисторной логики с непосредственными связями (НСТЛ).

Разнообразие типов базовых элементов объясняется тем чтс каждый из них имеет свои достоинства и свою область применения Некоторые из перечисленных типов элементов: РТЛ ДТЛ ЭСЛ перешли в цифровую микроэлектронику, сохранившись практичее-кг в том же виде, какими они были в цифровых устройствах на на весных компонентах. Элементы ТТЛ, НСТЛ на МДП-транзисторал появились сразу в микроэлектронном исполнении. В настоящее время наблюдается интенсивное развитие серий микросхем построенных на принципах ТТЛ, НСТЛ, ЭСЛ и вытеснение ими микросхем РТЛ и ДТЛ. Однако пока мы имеем широкую номенклатуру вы пускаемых микросхем всех типов, что и принято во внимание пои изложении материала. F

Базовый элемент РТЛ представлен на рис. 4.3. Он выполняет логическую операцию ИЛИ - НЕ. Управление его работой осуществляется подачей сигналов в базовые цепи транзисторов- присутствие сигнала 1 хотя бы на одном входе приводит к открыванию соответствующего транзистора и обеспечению состояния 0 на выходе элемента.

К выходу логического элемента можно подключить несколько входов таких же элементов. Для выравнивания входных токов элементов-нагрузок в базовые цепи транзисторов включены резисторы

Базовые элементы ДТЛ строятся на основе диодной логической схемы и транзисторного инвертора (рис. 4.4). Элемент выполняет операцию И - НЕ: для перевода элемента в состояние 0 на выходе необходимы сигналы 1 на всех входах.

Рис. 4.4. Базовые элементы ДТЛ:

а - со смещающими диодами; б - с дополнительным транзистором

Число различных вариантов построения элементов ДТЛ веаико Мы ограничимся рассмотрением тех из них, которые получили наиболее широкое распространение. Элемент, схема которого представлена на рис. 4.4,а,


является базовым для микросхем серии 217 Он содержит несколько входных диодов, которые вместе с резистором Ri служат для выполнения логической операции И и выходной инвертор. Два диода До в цепи базы транзистора, часто называемые смещающими, предназначены для увеличения порога срабатывания инвертора. Нередко предусматривается возможность подключения ко входу дополнительной диодной сборки для расширения логических возможностей элемента по выполнению операции И.

Работает элемент следующим образом. При наличии хотя бы на одном входе сигнала 0 соответствующий диод открыт и ток от источника Е] через резистор R] и открытый диод Д{ поступает в выходную цепь предыдущего элемента. При этом транзистор оказывается закрытым, и на выходе элемента напряжение имеет высокий уровень, т. е. уровень 1.

Если на все входы поданы сигналы с уровнем 1, входные диоды закрыты, и ток от источника ei поступает в базу транзистора. Он открывается и входит в режим насыщения, при этом выходное напряжение уменьшается до уровня 0.

Выключается транзистор обратным током базы, протекающим через диоды До, представляющие некоторое время малое сопротивление обратному току, диод Д] и выход открытого транзистора предыдущего элемента. Время восстановления диодов Д0 должно быть больше времени рассасывания накопленного в транзисторе Т заряда: в противном случае диоды Д0 закроются, и процесс выключения транзистора существенно замедлится.

В варианте ДТЛ элемента, показанном на рис. 4.4,6 (базовый элемент для микросхем серий 109, 121, 156 и др.), вместо одного из смещающих диодов используется транзистор Т2, усиливающий ток, включающий выходной транзистор Т]. В результате использования дополнительного транзистора удается уменьшить требуемое значение напряжения E] до 5 В и снизить требования к усилению выходного транзистора, что способствует увеличению выхода годных схем при их изготовлении.

Другая особенность элемента - наличие диода между базой выходного транзистора и входными диодами. Этот диод, называемый ускоряющим, постоянно закрыт и играет роль конденсатора. Емкостью конденсатора является емкость электронно-дырочного перехода этого диода. Благодаря ей ускоряется включение выходного транзистора и его выключение, так как на этапе включения емкость способствует более быстрому пропусканию тока в базу транзистора, а при выключении создает дополнительный выключающий ток за счет накопленного ею заряда.

Существенный недостаток рассмотренных элементов заключается в том, что они имеют большое выходное сопротивление в закрытом состоянии, поскольку коллекторное сопротивление выходного транзистора составляет обычно тысячи ом. Это уменьшает ток, отдаваемый в нагрузку, и, как следствие, увеличивает время заряда емкости на выходе элемента.

Базовые элементы ТТЛ строят по тому же принципу, что и элементы ДТЛ, но вместо диодной сборки применяют многоэмит-терный транзистор, называемый так потому, что у него в базе сформировано несколько (обычно от 2 до 8) эмиттерных областей. Обычно ТТЛ элементы имеют сложный инвертор. Один из типичных вариантов построения элементов рассматриваемого типа приведен на рис. 4.5,а, где показан элемент с возможностью расширения по ИЛИ. Эта возможность реализуется при подключении расширителя (рис. 4.5,6).

Элемент ТТЛ работает следующим образом. Когда на все входы многоэмиттерного транзистора ti (рис. 4.5,а) поданы сигналы 1 все эмиттерные переходы входного транзистора закрыты, и ток от источника через резистор Ri и открытый коллекторный переход транзистора ti поступает в базу транзистора Т2 и открывает его до насыщения. При этом открывается до насыщения и транзистор Т4, обеспечивая низкий уровень выходного напряжения. Транзистор Т3 в это время закрыт, поскольку напряжение на коллекторе открытого транзистора Т2 мало. Диод Д служит для повышения порога открывания транзистора Г3.

Рис. 4.5. Базовый элемент ТТЛ (а) и расширитель по ИЛИ (б)

При наличии хотя бы на одном входе сигнала 0 открывается соответствующий эмиттерный переход входного транзистора, и ток от источника через резистор ri и открытый эмиттерный переход поступает в выходную цепь источника сигнала, т. е. выходит из рассматриваемого элемента. Транзисторы Т2 и Г4 закрываются, а транзистор 73 открывается. На выходе обеспечивается уровень 1. Таким образом,



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15] [стр.16] [стр.17] [стр.18] [стр.19] [стр.20] [стр.21] [стр.22] [стр.23] [стр.24] [стр.25] [стр.26] [стр.27] [стр.28] [стр.29] [стр.30] [стр.31] [стр.32] [стр.33] [стр.34] [стр.35] [стр.36] [стр.37] [стр.38] [стр.39] [стр.40] [стр.41] [стр.42] [стр.43] [стр.44] [стр.45] [стр.46] [стр.47] [стр.48] [стр.49] [стр.50] [стр.51] [стр.52] [стр.53] [стр.54] [стр.55]