Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[17]

условно называемые многофункциональными.

Микросхемы 235ХА6 и 435ХП1 включены в эту группу благодаря универсальности применения, соответственно на частотах до 150 и 200 МГц. Их можно использовать при создании усилителей ВЧ, ПЧ, смесителя, гетеродина, ограничителя, умножителя частоты и т. д. Такими же универсальными свойствами обладают и многие другие микросхемы, обычно включенные в подгруппу усилителей. Чаще всего это микросхемы, содержащие дифференциальные каскады.

Остальные микросхемы рассматриваемой подгруппы выполняют одновременно несколько функций. Это микросхемы К140ХА1 (фа-зочувствительный усилитель-преобразователь), КД74ХА2 (усилитель ВЧ с АРУ, преобразователь, усилитель ПЧ с АРУ), К2ЖА242 (смеситель, гетеродин), К2ЖА243 (детектор AM и усилитель АРУ), К2ЖА244 (усилитель-ограничитель), К237ХК1 (усилитель, преобразователь), К237ХК2 (усилитель ПЧ, детектор АРУ), К237ХКЗ (оконечный усилитель записи, усилитель с выпрямителем для индикатора уровня записи), К237ХК5 (усилитель, преобразователь).

Модуляторы. Семь типов микросхем, относящихся к пяти сериям КП9, К140, 219, 235 и 435, образуют подгруппу модуляторов.

В нее входят: микросхема КН9МА1 регулирующего элемента АРУ (с глубиной регулирования коэффициента ослабления не менее 5), три микросхемы 235МП1, 235МП2, 435МА1 кольцевых модуляторов, из которых 235МП1 имеет наименьший частотный диапазон, две микросхемы подмодуляторов 219МС1 и 219МС2, предназначенных для управления варикапом, входящим в контур генератора ЧМ сигналов, и балансный модулятор (перемножитель) К140МА1, который может быть использован в балансных модуляторах, фазовых детекторах, перемножителях и др.

Из подмодуляторов серии 219 микросхема 219МС1 имеет более высокий частотный диапазон (до 5 МГц), а микросхема 219МС2 обладает лучшей чувствительностью и позволяет получить более высокое выходное напряжение.

Наборы элементов. Большое разнообразие характерно для микросхем, представляющих собой наборы элементов.

Микросхема К228НЕ1 содержит только конденсаторы (пять по 12000 пФ), микросхема К228НК1 представляет собой совокупность четырех диодов и четырех резисторов по 2 кОм, в микросхеме К260НЕ1 имеются 16 резисторов сопротивлением от 100 Ом до 10 кОм и 13 конденсаторов емкостью от 1000 пФ до 4700 пФ.

Пять разновидностей микросхем серии К142 выполнены в виде диодных матриц с различными вариантами соединения элементов (в микросхеме К142НД5 диоды не соединены).

Остальные микросхемы данной подгруппы представляют собой наборы транзисторов. Бескорпусные микросхемы серии К129 и их аналоги в корпусах типа 301.8 - 2 серии К159 содержат по два n-p-n транзистора для дифференциальных и операционных усилителей. Для этих же целей можно использовать согласованные транзисторные пары и одиночные транзисторы в микросхемах К198НТ1 - К198НТ8.

Пять n-p-n транзисторов (один из них в диодном включении) входят в состав микросхемы 219НТ1, четыре n-p-n транзистора - в состав микросхемы 2НТ192, три разобщенных n-p-n транзистора содержит микросхема К224НТ1. Для питания транзисторов микросхем серии 219 необходимо напряжение 5 или 6 В, а напряжение источника питания микросхемы К224НТ1 составляет 15 В. По усилительным свойствам транзисторы этих микросхем практически одинаковы.

Согласованные пары полевых транзисторов имеются в микросхемах серии К504. Транзисторы микросхем К504НТ1 и К504НТ2 работают при начальном токе стока не более 2 мА. Ток стока транзисторов в микросхемах

К504НТЗ и К504НТ4 может достигать 20 мА.

Преобразователи. Микросхемы подгруппы преобразователей входят в основном в состав функционально-полных серий 219, К224, 235, 435 и ряда других.

Для преобразователей частоты в радиоаппаратуре в первую очередь может быть использована микросхема 219ПС1, выпускаемая для диапазонов частот 44 - 55 МГц и 10 - 14 МГц, микросхемы 235ПС1 и 235ПС2, работающие на частотах до 150 МГц (различие между ними по нижней граничной частоте, составляющей соответственно 600 и 50 кГц), микросхема двойного балансного смесителя 435ХА1 с еще более высокими рабочими частотами.

Микросхемы К228ПП1 и К228ПП2 используют как декодирующие преобразователи при разных по полярности питающих напряжениях (соответственно - 6,3 В и +6,3 В). Аналогичное назначение имеют и микросхемы К265ПП1 и К265ПП2. К преобразовательным микросхемам относятся диодный мост КН9ПП1, управляемый делитель для системы АРУ 235ПП1, преобразователь напряжения К224ПН1, ключевой элемент АРУ телевизионных приемников и преобразователь напряжения АРУ серии К.245, а также управляемый преобразователь уровня К284ПУ1.

Вторичные источники питания. Для стабилизации напряжения в профессиональной и радиолюбительской аппаратуре выпускаются специализированные серии микросхем К142, К181, К275 и К299.

В серию КД42 входят стабилизаторы компенсационного типа с защитой от выхода из строя при коротком замыкании в нагрузке. Микросхемы К142ЕН1 и К142ЕН2 обеспечивают выходное напряжение от 3 до 90 В при коэффициенте нестабильности по току и напряжению в пределах 0,1-0,5 %.. Микросхема серии К181 обеспечивает регулируемое стабилизированное напряжение 3 - 15 В. Микросхемы серии К275 образуют комплект стабилизаторов с фик-сированным выходным напряжением от 1 до 24 В. Микросхемы К275ЕН7, К275ЕН9,


К275ЕН12, К275ЕН14 и К275ЕН15 являются стабилизаторами отрицательного напряжения. Стабилизаторы серии К142 могут работать при большем выходном токе (до 150 мА), чем остальные микросхемы.

Большой интерес для радиолюбителей представляют микросхемы выпрямителей с умножением напряжения

до 2000 - 2400 В, входящие в серию К299.

В подгруппу вторичных источников питания входит и микросхема К2ПП241, предназначенная для стабилизации напряжения 3,3 - 3,9 В.

Устройства селекции и сравнения. Основу подгруппы составляют компараторы, предназначенные главным образом для преобразователей аналоговых сигналов в цифровую форму.

Микросхема К521 СА1 представляет собой двойной дифференциальный компаратор с двумя входами стробирования, позволяющий строить двухпороговые схемы с симметричным откликом на положительное и отрицательное превышение абсолютного уровня сигнала над пороговым уровнем.

Компаратор К521 СА2 выполнен без входов стробирования. Его выходная мощность достаточна для управления десятью ТТЛ вентилями. Компаратор К521 САЗ имеет более высокий коэффициент усиления (150000 по сравнению с 750) и может работать при средних входных токах менее 100 нА, в то время как два других компаратора работают при токах до 75 мкА.

Аналогичные компараторы входят в серию К554. В серии К597 имеется компаратор К597СА1, работающий при меньших токах стробирования и меньшем входном напряжении.

В подгруппу устройств селекции и сравнения входят и существенно отличающиеся по назначению и основным параметрам микросхемы: КП9СС1 и КП9СС2, представляющие собой элементы схем частотной селекции, КП9СВ1 (линейный пропускатель), К224САЗ (устройство сравнения амплитудное), K228CAI (устройство сравнения токов) и др.

Усилители. В сериях аналоговых микросхем наиболее полно представлены усилительные микросхемы.

В усилителях ВЧ аппаратуры радиосвязи наиболее целесообразно использовать микросхемы К175УВ1,

К175УВ2, 219УВ1, К265УВ1, К265УВ2, К265УВЗ, К265УВ4, К265УВ5, К265УВ6, К265УВ7, имеющие

частотный диапазон до 60 МГц, а также микросхемы 235УВ1 и 435УВ1, работающие на частотах до 150 - 200

МГц.

Для усилителей ПЧ выпускают микросхемы в сериях К174, К175, 219, 235, 435 и др. Микросхемы К174УР1, К174УР2, К174УРЗ предназначены для трактов ПЧ изображения и звука телевизионных приемников.

Несколько микросхем усилителей ПЧ предназначены для аппаратуры радиосвязи и радиовещания. Среди них можно выделить универсальный усилитель К175УВЗ с крутизной проходной характеристики 500 мА/В.

Микросхемы 235УРЗ, 235УР9, 235УР7 и 235УР11 выполнены с АРУ. Наибольшая глубина регулирования (не менее 86 дБ) достигнута в микросхемах 235УРЗ и 235УР9. В качестве усилителей ПЧ с АРУ можно использовать и микросхему усилителей ВЧ и ПЧ 435УВ1 с крутизной проходной характеристики не менее 60 мА/В, а также экономичный усилитель ПЧ 435УР1 с крутизной характеристики более 120 мА/В.

Широко представлены в рассматриваемых сериях микросхемы усилителей НЧ. По шумовым свойствам лучшими являются усилители серии К226. По усилительным свойствам можно выделить усилители К237УНЗ (Ku>1900) и К167УН1 (Я„=500-+-1300). Небольшим коэффициентом усиления характеризуются усилители НЧ серии КИ9 и отдельные - серии К226. Усилитель на микросхеме К237УН1 работает при коэффициенте нелинейных искажений не более 0,3%. Для остальных микросхем усилителей НЧ он составляет 0,7 - 5 %.

Для радиолюбителей повышенный интерес представляют выходные усилители серий КН8 и К174 с выходной мощностью до 6 - 8 Вт.

Исключительно широкими функциональными возможностями характеризуются ОУ. Среди них наиболее высокий коэффициент усиления имеют ОУ К153УД5, КНОУД6, К544УД1А. Лучшее подавление синфазной помехи обеспечивают ОУ К140УД13, К153УД5. Минимальное напряжение смещения у ОУ К140УД13, К153УД5, К153УД6, К140УД14. Наибольшее входное сопротивление имеют ОУ, выполненные на супер-0- или МДП-транзисторах. Это прежде всего ОУ серии К544, К284УД2, К140УД13, КНОУД14.

В наиболее широком частотном диапазоне могут устойчиво работать усилители К140УД10, К140УД11, К140УД5.

В качестве микромощных ОУ можно применять микросхемы К140УД12, К140УД14, К153УД4, К710УД1.

Некоторые из выпускаемых промышленностью микросхем предназначены для использования в различных по выполняемым функциям узлах. Это усилители К198УТ1, К265УВ5, К228УВ1 и др. Например, микросхему К228УВ1 можно использовать, выполняя апериодический или резонансный усилитель по схеме ОЭ, ОК., ОБ, смеситель, генератор, умножитель частоты, амплитудный детектор и др.

Глава третья ПРИМЕНЕНИЕ АНАЛОГОВЫХ МИКРОСХЕМ

3.1. НЕКОТОРЫЕ ОСОБЕННОСТИ ПОСТРОЕНИЯ АНАЛОГОВЫХ УСТРОЙСТВ НА МИКРОСХЕМАХ

Использование выпускаемых промышленностью микросхем широкого применения для создания


аналоговых радиоэлектронных устройств требует учета целого ряда особенностей, связанных с реализованными в микросхемах решениями, с номенклатурой микросхем и их параметрами, с конструктивно-технологическим уровнем производства.

Интегральные микросхемы позволяют на более высоком уровне использовать функционально-узловой метод проектирования. Этот метод основан на широком применении при разработке аппаратуры типовых функциональных узлов, в качестве которых могут выступать как отдельные микросхемы, так и несколько микросхем, выполняющих определенное преобразование сигнала.

Аналоговые микросхемы выпускают, как правило, функционально-незавершенными. Это обусловлено большим разнообразием схем аналоговых устройств, необходимостью использования микросхем на различных частотах, с различными видами нагрузки, а также отсутствием в микросхемах конденсаторов и катушек индуктивности больших номиналов. Для удовлетворения высоких требований по селективности и подавлению различных побочных излучений радио и телевизионных устройств в усилителях ВЧ, ПЧ и преобразователях используют внешние катушки и конденсаторы, а также пьезокерамические и кварцевые фильтры. Перспективны методы создания избирательных цепей на основе элементов R и С в сочетании с усилителями (активные ЯС-фильтры). Опубликованы результаты разработки микросхемы гиратора, позволяющего создавать искусственные индуктивности от 1 мГн до 100 Гн с добротностью от 30 до 500.

С другой стороны, при создании единичных образцов аппаратуры на функционально-незавершенных микросхемах радиолюбитель имеет возможность наиболее эффективно использовать микросхемы в конкретном варианте их включения путем тщательного подбора внешних элементов. При построении трактов аналоговых устройств на нескольких микросхемах возникает задача их согласования и согласования с другими компонентами (трансформаторами, фильтрами, контурами). Для облегчения решения задачи согласования желательно применять микросхемы одной серии.

Применение микросхем часто вызывает изменение установившихся принципов построения трактов аналоговых устройств. Например, вместо покаскадного использования селективных компонентов наиболее часто применяют сосредоточенную фильтрацию сигнала после нескольких каскадов широкополосного усиления.

Важную роль при создании аппаратуры на микросхемах приобретают вторичные источники питания. Появление специальных микросхем (см. гл. 2) позволило осуществлять стабилизацию напряжения питания отдельных каскадов. Одновременно такие микросхемы обеспечивают фильтрацию напряжения и развязку каскадов по цепям питания, что обычно производилось с помощью дросселей, резисторов и конденсаторов большой емкости.

При использовании микросхем в большей взаимосвязи, чем при конструировании устройств на транзисторах, должны решаться схемотехнические и конструктивно-технологические вопросы. Это относится к расположению микросхем и радиокомпонентов на печатной плате, мерам по исключению самовозбуждения, уменьшению наводок, отводу тепла и ряду других вопросов, которые рассмотрены в гл. 6.

Новые возможности для радиолюбителей открывает применение интегральных микросхем операционных усилителей. В сочетании с внешними компонентами операционные усилители позволяют реализовать большое количество функций по преобразованию сигналов, встречающихся в аналоговых устройствах. Это быстро развивающееся и принципиально новое направление в радиолюбительской практике.

Применение интегральных микросхем позволяет реализовать ряд более сложных схемных решений. Например, при использовании амплитудной модуляции в настоящее время нельзя получить высокое качество приема музыкальных передач, особенно в KB диапазоне. По этой причине в настоящее время получает широкое распространение ЧМ вещание в УКВ диапазоне. Применяя когерентный детектор в сочетании с системами АРУ и АПЧ, можно получить значительно большее отношение сигнал/шум, хорошее качество приема при больших замираниях сигнала, лучшую многосигнальную селективность. Однако такая аппаратура отличается высокой сложностью, и ее массовое производство возможно только на основе использования интегральных микросхем.

Главное преимущество интегральной технологии - возможность изготовления большого количества идентичных по параметрам транзисторов и резисторов, причем стоимость этих элементов почтя не зависит от их числа в микросхеме. Поэтому, если раньше разработчики старались сократить в устройствах число компонентов, особенно активных (ламп, транзисторов), то при конструировании аппаратуры на микросхемах возник совершенно новый подход, который заключается в использовании микросхем с возможно большей степенью интеграции, если даже это приводит к более сложным схемотехническим решениям. При таком подходе существенно повышается надежность устройств, их эксплуатационные удобства, уменьшаются масса и габаритные размеры.

Применение микросхем с повышенным уровнем интеграции позволяет осуществлять самые сложные технические решения и иметь при этом максимально достижимые параметры радиоаппаратуры в прежних габаритных размерах. Например, разрабатываются квадрофонические радиоприемники, магнитофоны и электрофоны, которые позволяют передавать глубину объемного звучания. С применением микросхем стало возможным создание любительского переносного радиоприемника с параметрами, которые раньше достигались только в профессиональных радиоприемниках. Такой радиоприемник может иметь практически все радиовещательные и радиолюбительские диапазоны, кроме станций с амплитудой и частотной модуляцией, обеспечивать прием радиостанций, работающих на одной боковой полосе, а также в режиме частотного или амплитудного телеграфирования. Иметь такой малогабаритный радиоприемник - мечта многих радиолюбителей.



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15] [стр.16] [стр.17] [стр.18] [стр.19] [стр.20] [стр.21] [стр.22] [стр.23] [стр.24] [стр.25] [стр.26] [стр.27] [стр.28] [стр.29] [стр.30] [стр.31] [стр.32] [стр.33] [стр.34] [стр.35] [стр.36] [стр.37] [стр.38] [стр.39] [стр.40] [стр.41] [стр.42] [стр.43] [стр.44] [стр.45] [стр.46] [стр.47] [стр.48] [стр.49] [стр.50] [стр.51] [стр.52] [стр.53] [стр.54] [стр.55]