Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[16]

кпоуд1 i.j

а)

Рис. 2.32. Микросхемы ОУ КНОУД1 (а) и КНОУД7 (б),

Микросхему К140УД1 выпускают в двух модификациях, различие между которыми показано в табл. 2.7.

Микросхема К140УД7 (рис. 2.32,6) по числу каскадов, вносящих основной вклад в обеспечение общего коэффициента усиления, относится к двухкаскадным ОУ. Входной каскад усилителя выполнен по сложной схеме на транзисторах Т&, Гц, Тд, Г)2 с дополняющими проводимостями. Плечи каскада построены по схеме ОК. - ОБ. На транзисторах T2 и T20 выполнен стабилизатор разности токов, что позволяет поддерживать постоянство токов входного каскада. Смещение на базы этих транзисторов подано с транзисторов в диодном включении.

Выходное напряжение первого каскада усиливается вторым каскадом на транзисторах Т13, Т15. Каскад нагружен на параллельно включенные внутреннее сопротивление генератора стабильного тока (на двухколлекторном транзисторе T4) и сопротивление двух-эмиттеркого транзистора Т16.

Выходной каскад ОУ выполнен на транзисторах Т$ и 722. Он работает в режиме АВ. Транзисторы Т6 и Гю обеспечивают смещение рабочей точки транзисторов выходного каскада. Транзисторы Т7 и T17 предназначены для защиты выходного каскада от перегрузки. Они открываются при недопустимом увеличении падения напряжения на резисторах R3 и R4. Транзисторы Г23 и Т16 (по цепи второго эмиттера) предназначены для линеаризации амплитудной характеристики ОУ.

Конденсатор С1 полностью корректирует АЧХ ОУ. Для повышения скорости нарастания выходного напряжения можно уменьшить степень коррекции, подключив к выводу 8 конденсатор емкостью 150 пФ. Для балансировки ОУ рекомендуется включить переменный резистор между эмиттерами транзисторов Tiu и 719 (выводы 1 и 5).

2.9. МИКРОСХЕМЫ КОМПАРАТОРОВ

В практике радиолюбителей часто возникает необходимость в сравнении величин аналоговых сигналов с выдачей результата сравнения в виде двухуровневого логического сигнала. Решить эту задачу можно с помощью специальных микросхем - компараторов. В общем случае это специализированные ОУ с дифференциальным входным каскадом, работающим в линейном режиме, и одиночным или парафазным выходным каскадом, работающим в режиме ограничения.


Обычно на один из входов компаратора подают исследуемый сигнал, на другой - опорное напряжение. Если их разность меньше напряжения срабатывания, на выходе формируется сигнал логической 1, в противном случае - сигнал логического 0.

Компараторы применяют в высокоскоростных аналого-цифровых преобразователях, усилителях считывания запоминающих устройств, автогенераторах, пиковых детекторах, дискриминаторах и других устройствах.

Таблица 2.8

Параметр

K521CAI

К521СА2

К521САЗ

К597СА1

Коэффициент усиления, тыс.

0,75

0,75

50

1

Коэффициент ослабления син-

70

70

-

фазных входных напряжений,

дБ

Напряжение „I", В

2,5 - 6

2,4-4-4

-

- 0,8

Напряжение „0", В

- 1-0

- 1-0

0,4

- 1,6

Входной ток, мкА

75

75

0,1

10

Разность входных токов, мкА

10

10

0,01

3

Напряжение смещения, мВ

3,5

5

3

5

Входное напряжение, В

1-5

±5

+ 15

+3,5

Ток стробирования, мА

2,5

-

3

0,01

Время задержки включения,

ПО

120

300

-

КС

Напряжение питания, В

положительное

12

12

15-S-5

6

отрицательное

- 6

- 6

- 15-5-0

- 5,2

Ток потребления, мА от

положительного источника

11,5

9

6

22

питания

от отрицательного источника питания

7

8

5

26

Параметры некоторых интегральных компараторов приведены в табл. 2.8. Для примера рассмотрим компаратор К521СА2 (рис. 2.33,а).

Рис. 2.33. Микросхема К521СА2 (а) и прецизионный компаратор на. микросхеме К521СА1 (б)

Компаратор выполнен по сравнительно простой схеме без входов стробирования.

На входе применен дифференциальный каскад на транзисторах T6 и T7 с генератором стабильного тока на транзисторе Т9. Термостабилизация режима транзистора T9 обеспечивается транзистором Т10 в диодном включении.

Второй каскад тоже выполнен по дифференциальной схеме на транзисторах Т4 и 7Y Благодаря балансной схеме подачи смещения поддерживается постоянным напряжение на базе транзистора Т3 при изменении положительного напряжения питания. Стабилитрон Д2 в змиттерных цепях транзисторов Г4 и Т5 фиксирует потенциалы их баз на уровне 7В. Это значение определяет допустимый входной сигнал. Для повышения


нагрузочной способности выхода по току применен эмиттерный повторитель на транзисторе 72.

Стабилитрон Д1 в эмиттерной цепи этого транзистора предназначен для сдвига уровня выходного сигнала с целью обеспечения совместительности компаратора по выходу с входами цифровых ТТЛ микросхем. Транзистор Т8 обеспечивает путь для входного вытекающего тока подключенной к компаратору ТТЛ микросхемы при логическом 0. Транзистор Т1 в диодном включении замыкает дифференциальный выход второго каскада, если размах выходного напряжения в положительной области превышает 4 В. Это способствует повышению быстродействия компаратора.

Более совершенной является двухканальная схема построения компараторов, реализованная, в частности, в микросхеме К521 СА1. На рис. 2.33,6 приведен пример использования этой микросхемы в качестве компаратора напряжения.

2.10. ОСОБЕННОСТИ МИКРОСХЕМ, ИМЕЮЩИХ ОБЩЕЕ ФУНКЦИОНАЛЬНОЕ ПРЕДНАЗНАЧЕНИЕ

При несоответствии функциональных возможностей базовой серии требованиям к узлам и элементам разрабатываемой РЭА возникает задача поиска дополнительных микросхем из других серий. В помощь читателю приводим распределение микросхем по функциональным подгруппам.

Генераторы. Генераторные микросхемы входят в состав серий К218, 219, К224, К237, К245 и др. Кроме того, в состав некоторых серий включены микросхемы (219ПС1, 435ХП1, 235ХА6, К228УВ1 и др.), которые благодаря своей универсальности могут быть использованы при создании генераторов.

Микросхемы 219ГС1 и 219ГС2 предназначены для кварцевых генераторов (с внешним кварцевым резонатором). Первую из них используют на частотах 30 - 70 МГц, а вторую - на частотах до 30 МГц. На микросхеме 219ГСЗ можно выполнить генератор частотно-модулированных колебаний с диапазоном рабочих частот 13 - 15 МГц. Микросхему К237ГС1 используют в генераторах тока стирания и подмагничивания магнитофонов.

Для создания различных по назначению и параметрам генераторов сигналов специальной формы предназначены микросхемы К224ГГ2 (генератор прямоугольных импульсов), К2ГФ451 (генератор строчной развертки), К2ГФ452 (генератор кадровой развертки).

Детекторы. Подгруппа детекторов включает в себя микросхемы: КП9ДА1 (детектор АРУ), К218ДА1 (детектор радиоимпульсов). 235ДС1 (усилитель-ограничитель и частотный детектор), 219ДС1 (ограничитель-дискриминатор), а также микросхемы 235ДА1, 235ДА2, 435ДА1, 175ДА1, в которых амплитудный детектор выполнен совместно с детектором АРУ, усилителем постоянного тока и змиттерным повторителем.

Детектор AM сигналов входит в состав многофункциональной микросхемы К2ЖА243.

В серии К224 выпускались ранее детекторы отношений К2ДС241 и К2ДС242, из которых второй был выполнен по более совершенной схеме.

Коммутаторы и ключи. Микросхемы коммутаторов и ключей включены в состав многих серий (К101, КН9, К124, К143, К149, К162, К168, К190, К228, 235, К265, К284, К286, 435, К743, К762 к др.).

Широко применяют биполярные интегральные прерыватели серий К101, К124, К162, К743, К762, основанные на эффекте последовательной компенсации. Микросхемы серии К101 и их бескорпусные аналоги серии К743 выполнены на n-р-п, остальные на р-п-р транзисторах. Все прерыватели характеризуются примерно одинаковым сопротивлением между эмиттерами (100 Ом). Наименьший ток утечки между эмиттерами (10 нА) характерен для прерывателей серии К101. Наиболее высоковольтными являются прерыватели серий К124 и

К162.

По четыре нескомпенсированных ключа выполнены в микросхемах серии К149, выпускаемых для разных градаций напряжения питания (3; 5; 12,6 В).

Микросхему К273КН1 можно применять как ключ среднего быстродействия с изолированной трансформаторной схемой управления. Схема управления имеется в микросхеме К284КНЗ, выполненной на полевых транзисторах и работающей в диапазоне до 1 МГц. Недостаток ключа - сравнительно большое (250 Ом) сопротивление в открытом состоянии.

Хорошую развязку между управляющей и коммутируемой цепями обеспечивают ключи на МДП-транзисторах. Это прежде всего четырехканальный переключатель К168КТ2, пятиканальный переключатель напряжения К190КТ1 и сдвоенный двухканальный переключатель К190КТ2, позволяющие коммутировать напряжения до 25 В при частоте коммутации до 1 МГц. Высококачественный двухканальный переключатель со схемой согласования выходных уровней ТТЛ микросхем с входными уровнями МДП-транзисторов выполнен в микросхеме КР143КТ1.

В ряде серий имеются специализированные коммутаторы и ключи. В линейно-импульсных устройствах находят применение коммутатор КП9КП1 и диодный ключ К228КН1. До высоких частот (свыше 15МГц) устойчиво работает диодный ключ К265КН1. Токовые ключи К286КТ1 и К286КТ2 обеспечивают сопротивление в открытом состоянии не более 0,6 Ом.

Микросхемы 235КП1, 235КП2, 435КН1 и 435КН2 предназначены для коммутации трактов НЧ, ПЧ, а также для использования в многочастотных гетеродинах аппаратуры KB и УКВ радиосвязи.

Многофункциональные схемы. В сериях К НО, К174, К224, 235, К237, 435 и др. имеются микросхемы,



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15] [стр.16] [стр.17] [стр.18] [стр.19] [стр.20] [стр.21] [стр.22] [стр.23] [стр.24] [стр.25] [стр.26] [стр.27] [стр.28] [стр.29] [стр.30] [стр.31] [стр.32] [стр.33] [стр.34] [стр.35] [стр.36] [стр.37] [стр.38] [стр.39] [стр.40] [стр.41] [стр.42] [стр.43] [стр.44] [стр.45] [стр.46] [стр.47] [стр.48] [стр.49] [стр.50] [стр.51] [стр.52] [стр.53] [стр.54] [стр.55]