Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[12]

только транзисторы Т3 и Т2, или для подключения цепи АРУ. В последнем случае благодаря наличию в схеме резистора R4 изменение регулирующего напряжения не окажет заметного влияния на входное сопротивление усилителя и на форму его частотной характеристики. Подключением к выводу 11 конденсатора большой емкости обеспечивают заземление базы транзистора Т3 по переменной составляющей.

Микросхема может использоваться как с внутренней нагрузкой (резистор Rs), так и с различными по характеру внешними нагрузками, включаемыми между выводами 7 и 9.

Выпускают три модификации (А, Б, и В) микросхемы К122УН2 с коэффициентом усиления на частоте 12 кГц не менее 15, 25 и 40 и напряжением питания 4 В±10% (А) или 6,3 В ±10% (Б, В). ~

Серии КН8 и К722 содержат кроме усилительных микросхем видеоусилитель и триггер Шмитта, выпускаемые в нескольких модификациях.

Видеоусилители обеспечивают напряжение на выходе 55 или 11 В при коэффициенте усиления на частоте 12 кГц от 900 до 2000. Напряжение питания 6,3 В ±10% или 12,6 В +10 %

Модификации триггера Шмитта различаются по питающему напряжению (±3 В ±10%, ±4 В ±10%, ±6,3 В ±10%) пи входному току (20 и 40 мкА), а также по уровням входного и выходного напряжений.

Микросхемы серий КП9, К218 и К228 для линейных и импульсных устройств. Серия микросхем КН9 включает в себя два усилителя НЧ с коэффициентом усиления 2 - 5 (КН9УН1) и 7-13 (КП9УН2) на частоте 10 кГц и с верхней граничной частотой 100 кГц; дифференциальный усилитель (К119УТ1) с коэффициентом усиления 3 - 5 и рабочим диапазоном частот 5 Гц-200 кГш эмиттерный повторитель КИ9УЕ1, обеспечивающий на частоте 1 кГц коэффициент передачи не менее 0,7; видеоусилитель КП9УИ1 для усиления импульсов отрицательной полярности с длительностью от 0,3 до 500 мкс, имеющий на частоте 10 кГц коэффициент передачи 4 - 10; мультивибратор с самовозбуждением КП9ГП вырабатывающий импульсы с длительностью 7 - 25 икс и с амплитудой не менее 1,2 В; регулирующий элемент АРУ КН9МА1 с коэффициентом ослабления 2 - 8; детектор АРУ К119ДА1 с рабочим диапазоном частот 5 Гц - 40 кГц и с коэффициентом передачи на частоте 10 кГц не менее 0,6; линейный пропускатель КН9СВ1 с коэффициентом передачи не менее 0,65; чувствительный триггер Шмитта КН9ТЛ1 с порогами срабатывания и отпускания 0±0,1 В, а также коммутатор КН9КП1, активные элементы схем частотной селекции КН9СС1 и КН9СС2, диодный мост К119ПП1 и элемент блокинг-генератора КН9АГ1.

Для питания микросхем серии используются напряжения ±3, ±6,3, 12В с допуском ±10 %.

Серия К218 состоит из трех импульсных усилителей (К218УИ1 - К218УИЗ), усиливающих импульсы любой полярности длительностью 0,3 - 500 мкс с коэффициентом передачи не менее 3; двух эмиттерных повторителей К218УЕ1 и К.218УЕ2 (положительной полярности и биполярного), предназначенных для передачи импульсов длительностью 0,3 - 1,5 мкс с коэффициентом передачи более 0,8; усилителя ПЧ К218УР1 с частотным диапазоном 22,5 - 37,5 МГц и с коэффициентом усиления не менее 7; автоколебательного мультивибратора К218ГГ1 с амплитудой выходных импульсов более 3 В при частоте следования от 50 Гц до 0,6 МГц; ждущего мультивибратора К218АГ1, работающего при амплитуде входных импульсов 2,5 - 6 В (отрицательной полярности), следующих с частотой менее 250 кГц; детектора радиоимпульсов К218ДА1 с линейным участком амплитудной характеристики не менее 400 мВ и с коэффициентом передачи на несущей частоте 30 МГц от 0,5 до 1; триггера с комбинированным запуском К218ТК1. Напряжение питания микросхем серии К218 6,3 В ±10 %.

Серия К228 существенно дополняет серию К218.

Микросхемы этих серий согласованы по стыковочным параметрам и напряжению питания. Они имеют единое конструктивное оформление.

В состав серии К228 входят: три усилителя (универсальный К228УВ1, каскодный К228УВЗ и регулируемый К228УВ2) с верхней граничной частотой 60 МГц и с крутизной характеристики на этой частоте не менее 7,5 мА/В (причем регулируемый усилитель обеспечивает возможность изменения крутизны в пределах 40 дБ); балансный усилитель К228УВ4 с крутизной вольт-амперной характеристики более 5 мА/В на частоте 5 МГц, обеспечивающий разбаланс на выходе менее 3 дБ; устройство сравнения токов К228СА1 с током срабатывания не более 20 мкА; диодный ключ К228КН1, обеспечивающий отношение выходных напряжений в состояниях «Открыто» и «Закрыто» не менее 100; два диодно-рези-сторных декодирующих преобразователя К228ПП1 и К228ПП2 с управляющими напряжениями +1 и - 1 В, а также комбинированная диодно-резистивная матрица К228НК1 и конденсаторная сборка К228НЕ1 из пяти конденсаторов по 12000 пФ.

Для питания микросхем серии К228 используется напряжение ±6,3 В ±10%.

Микросхемы прерывателей и ключей. Серии К101, К124, К162, К743 составлены из микросхем, предназначенных преимущественно для коммутации слабых сигналов постоянного и переменного токов. В качестве прерывателей они применяются в разрядных ключах, преобразователях код-аналог, аналог-код и т. д.

Каждая микросхема представляет собой два идентичных n-p-n (К101, К743) или р-п-р (К124, К162) транзистора, объединенных в последовательный структурно-компенсированный ключ Как показано на примере микросхемы К101КТ1 (рис. 2.19), коммутируемую цепь подключают к эмиттерным выводам транзисторов (вы воды 3 и 7), а управляющий сигнал подают между коллекторами и базами обоих транзисторов.


I ню1нт1 I

управляющее, напряжений

Рис. 2.19. Микросхема К101КТ1 (а) и варианты ее использования: прерыватель (б), модулятор (в), составной транзистор (г)

На практике необходимо, чтобы транзисторный ключ имел возможно меньшее значение остаточного напряжения. В микросхемах рассматриваемых серий это достигается, во-первых, в результате выполнения транзисторов в едином технологическом цикле с идентичными параметрами, а во-вторых, в результате инверсного вклю чения транзисторов. Остаточные напряжения обоих транзисторов направлены встречно, взаимно компенсируясь, что и позволяет коммутировать весьма слабые сигналы.

Дополнительная регулировка остаточного напряжения возмож на с помощью переменного резистора, включаемого в колчекторную цепь. Такая схема может найти применение даже в высококачественных ключах эталонных напряжений. При этом следует помнить, что чем больше регулировочное сопротивление, тем уже диапазон переключаемых токов, в котором проявляются достоинства схемы.

Микросхемы прерывателей находят применение и в других электронных устройствах.

В табл. 2.5 приведены основные параметры интегральных прерывателей.

Таблица 2.5

Микросхема

Шэ.ост, мкВ

1ээ.ут, нА

Ыээ. Ом

икб.обр,

Шб.обр, В

Тип проводимости

К101КТ1А

50

10

100

3,5

6,5

n-р-п

К101КТ1Б

150

10

100

3,5

6,5

п-р-п

К101КТ1В

50

10

100

3,5

3,5

п-р-п

К.101КТ1Г

150

10

100

3,5

3,5

п-р-п

К124КТ1

300

50

100

-

30

р-п-р

K162KTIA

100

45

100

20

30

р-п-р

К162КТ1Б

200

45

100

20

30

р-п-р

K743KTIA

50

40

100

3,5

6,5

п-р-п

К743КТ1Б

150

40

100

3,5

6,5

п-р-п

К743КТ1В

50

40

100

3,5

3,5

п-р-п

К743КТ1Г

150

40

100

3,5

3,5

п-р-п

Серия 249 состоит из одной микросхемы 2КЭ491, выпускаемой в четырех модификациях (А - Г). Микросхема содержит два опто-электронных ключа (рис. 2.20,а). Каждый из ключей состоит из светодиода и фототранзистора. Особенности таких устройств - гальваническая развязка входной и выходной цепей и однонаправленность передачи сигналов. Для подобных оптоэлектронных ключей характерно сопротивление изоляции, превышающее 108 - 1014 Ом. Практически идеальная развязка обеспечивает ряд возможностей, не реализуемых в чисто электронных устройствах. Например, с помощью низких напряжений можно управлять высоковольтными цепями, можно связать цепи, работающие из раз-личных частотах, и т. д. Применение оптоэлектронных ключей способствует значительному улучшению помехозащищенности устройств, так как оптические связи разрывают цепи проникновения помех. Еще одно достоинство оптоэлектронных ключей - возможность их совместной работы практически со всеми логическими микросхемами.

Ключ на микросхеме 2КЭ491 может работать на двухпроводную линию (в режиме «оторванной» базы). Если необходимо обеспечить высокое быстродействие, такой режим неприемлем и целесообразно включить резистор параллельно эмиттерному переходу.

Это приведет к уменьшению времени рассасывания заряда в базе фототранзистора при выходе из режима насыщения. Например, подключение резистора с сопротивлением 3,9 кОм сокращает время выключения вдвое.

Коэффициент передачи тока любого из ключей не менее 0,5 для микросхем модификаций А и В и не менее


0,3 для микросхем Модификаций Б и Г.

I 1 I-1-1-1--1----.

~$о-№-го р го w во т,ъ

Рис. 2.20. Оптоэлектронный ключ (а) и зависимости его параметров от температуры (б)

Время нарастания и спада с учетом времени задержки не более 3 мкс при нагрузке 100 Ом. Напряжение насыщения фототранзистора не более 0,3 В при коллекторном токе 3 мА для микросхем модификаций А и В и при коллекторном токе 2 мА-для остальных. Напряжение на светодиоде 1,1 - 1,3 В при прямом токе 10 мА. Проходная емкость менее 5 пФ. У оптоэлектронных ключей 2КЭ491 максимальное остаточное напряжение на отдельном фототранзисторе не превышает 1 мВ. Это позволяет при встречно-параллельном включении получать остаточное напряжение менее 0,2 мВ.

Импульсные характеристики оптоэлектронных ключей существенно зависят от температуры. На рис. 2.20,6 показаны температурные зависимости времени задержки нарастания выходного тока (кривая 1), времени нарастания импульса тока (кривая 2), времени задержки спада импульса тока (кривая 3) и времени спада импульса тока (кривая 4).

Микросхему 2КЭ491 применяют преимущественно в качестве прерывателя. Кроме того, она может быть использована для модуляции аналоговых сигналов, для управления мощными транзисторами и т. д. Фототранзисторы микросхемы можно включить по схеме составного транзистора и обеспечить коэффициент усиления тока до 100.

Большие перспективы открывает применение пар «светодиод-фототранзистор» в дифференциальных усилителях. В [1] показано, что в таком усилителе коэффициент подавления синфазной помехи достигает 2?0

дБ.

2.6. МИКРОСХЕМЫ ДЛЯ УСИЛИТЕЛЬНЫХ ТРАКТОВ АППАРАТУРЫ РАДИОСВЯЗИ И РАДИОВЕЩАНИЯ

Наряду с функционально полными сериями микросхем для РЭА промышленность выпускает ограниченные по составу серии для отдельных трактов или узлов. Это серии К123, К129, К148 К167 К177, К198, К226, К260, К265, К284, К504.

Серия К123 объединяет три модификации микросхемы К123УН1. Полоса пропускания усилителей НЧ, выполненных на основе этой микросхемы, составляет 0,02 - 100 кГц. На частоте 1 кГц при выходном напряжении 0,5 В микросхемы модификаций А, Б, В имеют соответственно коэффициент усиления 300 - 500 100 - 350 и 30 - 500. При этом коэффициент нелинейных искажений у микросхем К123УН1А и К123УН1Б не более 2 %, а у микросхемы К123УН1В не более 5%. Входное сопротивление 10 кОм, выходное сопротивление 200 Ом. Напряжение питания 6,3 В ±10%, потребляемая мощность не более 100 мВт.

Серия К129 состоит из микросхем, являющихся наборами биполярных транзисторов.

Восемь модификаций бескорпусной микросхемы К129НТ1 представляют собой пары идентичных n-p-n транзисторов и используются в качестве активных элементов в широкополосных балансных схемах, например в дифференциальных или операционных усилителях. По коэффициенту передачи тока транзисторы подразделяются на четыре группы (20 - 80, 40 - 160, 60 - 180 и более 80), а по разности прямых падений напряжения эмиттер - база на две группы. Максимальное напряжение коллектор - база не более 15 В, обратный ток коллектора не более 200 нА. Допустимая рассеиваемая мощность не более 15 мВт.

Шесть модификаций таких же пар транзисторов выпускаются в металлостеклянных корпусах и объединяются в серию К159. Микросхемы этой серии отличаются более высокой допустимой рассеиваемой мощностью (50 мВт).



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15] [стр.16] [стр.17] [стр.18] [стр.19] [стр.20] [стр.21] [стр.22] [стр.23] [стр.24] [стр.25] [стр.26] [стр.27] [стр.28] [стр.29] [стр.30] [стр.31] [стр.32] [стр.33] [стр.34] [стр.35] [стр.36] [стр.37] [стр.38] [стр.39] [стр.40] [стр.41] [стр.42] [стр.43] [стр.44] [стр.45] [стр.46] [стр.47] [стр.48] [стр.49] [стр.50] [стр.51] [стр.52] [стр.53] [стр.54] [стр.55]