Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[41]

помехи. Поэтому при выборе способа включения фильтра в схему приемника и при размещении фильтра внутри корпуса радиоприемника необходимо стремиться к тому, чтобы длина проходящего внутри приемника провода питания, несущего помеху, была минимальной. Для этого фильтр включается в схему непосредственно после предохранителя (до выключателя питания радиоприемника) и размещается обычно на боковой стенке корпуса приемника (рис. 8.6) таким образом, чтобы провед от бортсети автомобиля, проходя сквозь отверстие в этой стенке корпуса, подключался непосредственно к- выводу первого дросселя фильтра Др1 (к точке 1 на рис. 8.5). При таком размещении фильтра излучение помехи внутри приемника с провода питания практически исключается. Значительное напряжение помех возникает также на обмотках дросселей Mpi и Др2. Для того чтобы исключить возможность вторичного излучения этого напряжения, катушки дросселей фильтра полностью экранируются.

Рис. 8.5. Схема фильтра цепей питания приемников Рис. 8.6. Размещение фильтра цепей питания

Примером типичного конструктивного выполнения фильтра цепей питания является блок фильтров, используемый в радиоприемнике А-370 (А-370М). Схема фильтра аналогична схеме, показанной на рис. 8.5. Дроссели фильтра Др1 и Др2 (индуктивность 240 мкГн) и конденсатор C1 емкостью 5 мкФ собраны на металлическом угольнике, который крепится на боковой стенке радиоприемника Дроссели намотаны на плоских тонкостенных каркасах и экранированы цилиндрическими экранами. Провод питания (от предохранителя) подключен непосредственно к началу обмотки дросселя Дрх. При монтаже фильтра в приемнике все детали фильтра оказываются полностью экранированными, причем элементом экранировки служит и часть боковой стенки корпуса приемника, на которой закреплен

Благодаря использованию эффективных средств фильтрации и экранировки обеспечивается надежная защита приемников от помех системы зажигания, проникающих по цепям питания или непосредственно воздействующих на его каскады. В то же время задача повышения качества приема радиовещания в автомобиле в условиях воздействия помех, наводимых системой зажигания в автомобильной антенне, решена лишь частично. Основной причиной этого является то, что частоты спектральных составляющих помехи лежат в радиовещательном .диапазоне, а уровни ЭДС этих составляющих, наводимых в антенне, близки или даже превышают номинальную чувствительность автомобильных приемников. Вследствие этого основным средством повышения помехоустойчивости приема в автомобиле следует считать дальнейшее улучшение эффективности системы по-мехоподавления, устанавливаемой на автомобилях. Вместе с тем анализ механизма воздействия импульсной помехи на тракт ЧМ автомобильного радиоприемника позволяет определить некоторые пути и средства повышения качества приема в УКВ диапазоне, которые могут быть заложены при разработке самого приемника.

Известно, что при воздействии на входе приемника импульсной помехи суммарное напряжение сигнала и помехи оказывается модулированным одновременно и по амплитуде и по частоте. Таким образом, задача повышения помехоустойчивости сводится к подавлению паразитной AM и ЧМ, накладываемой на полезный сигнал импульсной помехой.

Объективные измерения, проведенные по методике, рассмотренной в § 8.3, показали, что амплитудная составляющая модуляции, накладываемая помехой, в основном подавляется в тракте ЧМ автомобильного приемника за счет работы системы статического ограничения (уровень помех на выходе радиоприемника резко падает при переходе тракта ЧМ в режим глубокого ограничения). Этот вывод подтверждает важность проектирования автомобильных радиоприемников всех классов с ранним порогом ограничения, так как при


этом помимо сохранения устойчивости приема в широком диапазоне входных сигналов одновременно достигается определенный выигрыш в помехозащищенности при воздействии помех системы зажигания. Дополнительное подавление помех, особенно при малых входных сигналах, т. е. когда еще не достигнут режим глубокого ограничения, происходит за счет подавления паразитной AM дробным детектором.

Другим фактором, играющим существенную роль в снижении помехоустойчивости приема в диапазоне УКВ, является паразитная ЧМ помехой напряжения гетеродина. В результате измерений, проведенных с использованием гетеродинного волномера, было установлено, что при подаче на вход тракта ЧМ приемника напряжения помехи, близкой по уровню к реальным величинам, происходит смещение частоты гетеродина (на 20 - 30 кГц) и возникает паразитная ЧМ напряжения гетеродина с девиацией 10 - 20 кГц. Включение. АПЧ устраняет расстройку, однако паразитная ЧМ полностью не исключается.

Дальнейшие исследования показали, что наилучшее подавление паразитной ЧМ напряжения гетеродина, создаваемой при воздействии импульсной помехи, обеспечивается в тракте ЧМ, где приняты меры, повышающие стабильность частоты гетеродина при воздействии меняющихся по уровню входных сигналов. Колебания частоты гетеродина в таких приемниках не превышают 10 - 20 кГц при изменении входного сигнала от единиц микровольт до десятков милливольт при отключенной системе АПЧ. Необходимость гарантирования стабильности частоты гетеродина при отключении АПЧ связана с тем, что автоподстройка не может (и не должна) компенсировать динамические изменения частоты, возникающие при ЧМ напряжения гетеродина вследствие воздействия импульсной помехи.

Таким образом, можно сделать вывод, что наилучшая помехозащищенность приема УКВ ЧМ вещания в автомобиле (с точки зрения воздействия помех системы зажигания в антенне) обеспечивается в приемниках, в которых одновременно получены эффективная работа системы статического ограничения, высокая стабильность частоты гетеродина при воздействия меняющихся по уровню сигналов и импульсных помех и максимальная величина подавления сопутствующей AM.

В то же время необходимо учитывать тот факт, что описанные методы борьбы с помехами не позволяют кардинально решить эту проблему.

Анализ механизма воздействия помех от системы электрооборудования на каскады приемника и более глубокое изучение структуры этих помех при одновременном развитии интегральной схемотехники позволили в последнее время создать принципиально новые методы борьбы с импульсными помехами. Эти методы базируются на введении в тракт приемника специальных устройств, осуществляющих более или менее сложную обработку смеси полезного сигнала и импульсной помехи, обеспечивая в результате глубокое подавление помехи.

Наиболее широкое распространение в зарубежных моделях автомобильной радиоаппаратуры в последние годы получила так называемая система автоматического подавления импульсных помех на выходе ЧМ детектора. Система построена на известном временном принципе подавления помех, т. е. закрывании канала полезного сигнала на, время действия импульса помехи. Для этого в ЧМ тракт приемника между выходом ЧМ детектора и входом стереодекодера (или входом УНЧ в монофонических моделях) включается электронное ключевое устройство, которое. прерывает сигнал на время действия импульсной помехи. Управляющий сигнал для электронного ключа вырабатывается специальным устройством опознавания наличия импульса помехи, причем опознавание осуществляется на основе спектрального различия импульса помехи и полезного сигнала на выходе ЧМ детектора. Как известно, в то время как полезный стереосигнал имеет спектр до 46 кГц (в зарубежных приемниках, обеспечивающих прием опознавательных сигналов системы дорожной информации, - до 57 кГц), спектр импульсов помехи системы электрооборудования на выходе ЧМ детектора достигает 150 - 250 кГц, причем уровень высокочастотных составляющих импульса помехи пропорционален амплитуде импульса и


соответственно амплитуде составляющих спектра помехи, совпадающих со спектром полезного сигнала.

Устройство опознавания строится таким образом, что управляющий сигнал для ключевого каскада (в канале полезного сигнала) вырабатывается при наличии на его входе высокочастотных спектральных компонент помехи (150 - 250 кГц) определенного уровня, причем этот уровень (чувствительность устройства опознавания) выбирается таким, чтобы можно было надежно закрывать канал полезного сигнала только при наличии импульсов помехи достаточно высокой интенсивности, т. е. имеющих значительные составляющие и в спектре полезного сигнала.

Одним из важнейших преимуществ такого метода подавления помехи является то, что система реагирует на импульсы помехи не только от собственного источника (системы зажигания того автомобиля, на котором установлен приемник), но и на принятые артомобильной антенной импульсы помех от системы электрооборудования других автомобилей и прочих источников импульсных помех, имеющих аналогичный спектр. Основные элементы системы автоматического подавления помех (рис. 8.7) выполняют следующие четыре функции: опознавание появления импульса помехи и выработка управляющего сигнала, задержка сигнала с помехой на время 3 мкс, закрывание канала полезного сигнала, накопление (запоминание) мгновенных значений сигнала, действовавшего в момент закрывания.

Линия

SVflVKWJT?

Г]№?Я№ jвида? \втшаеь

«ниш

HtpButtaSaffjemap

Мяоч

Рис. 8.7. Структурная схема системы автоматического подавления импульсных помех

Сигнал с помехой, действующей на выходе ЧМ детектора, подается одновременно в тракт полезного сигнала и тракт опознавания и обработки импульса помехи. В тракте опознавания и обработки импульса помехи вначале выделяются высокочастотные составляющие смеси сигнала и помехи (принадлежащие, как отмечалось, спектру импульса помехи). Для этого используется либо ФВЧ, либо резонансный контур, настроенный на одну из частот ВЧ спектра помехи (на практике выбирается частота 180 кГц), достаточно отстоящую от диапазона частот полезного сигнала. После усиления и выделения постоянной составляющей из этих сигналов формируется управляющее напряжение, запускающее ждущий мультивибратор, импульсы которого управляют работой электронного ключа K1 в канале полезного сигнала. В тракте полезного сигнала смесь сигнала и помехи до подачи на ключевой каскад проходит через линию задержки, благодаря чему момент прерывания полезного сигнала (размыкание ключа K1) совпадает с завершением опознавания помехи, т. е. совпадает с моментом начала формирования переднего фронта импульса, вырабатываемого мультивибратором.

Время задержки (3 мкс) равно времени обработки импульса помехи в канале опознавания.

Для того чтобы в период размыкания ключа полезного сигнала не было полного отсутствия информации о полезном сигнале (про-падание»сигнала на выходе приемника), после ключевого каскада включен накопитель мгновенных значений, представляющий собой



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15] [стр.16] [стр.17] [стр.18] [стр.19] [стр.20] [стр.21] [стр.22] [стр.23] [стр.24] [стр.25] [стр.26] [стр.27] [стр.28] [стр.29] [стр.30] [стр.31] [стр.32] [стр.33] [стр.34] [стр.35] [стр.36] [стр.37] [стр.38] [стр.39] [стр.40] [стр.41] [стр.42] [стр.43] [стр.44] [стр.45] [стр.46] [стр.47] [стр.48] [стр.49]