Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[48]

являются строго доказанными и их достоверность не вызывает сомнений, конечно с учетом принятых при выводе допущений. Поэтому аналитические зависимости используются в качестве своеобразных эталонов, с которыми сопоставляются результаты, получаемые другими методами. Некоторые аналитические зависимости носят абсолютно общий характер и используются в качестве законов, отображающих фундаментальные свойства вычислительных систем. Во-вторых, аналитические модели имеют большую познавательную ценность. Аналитические зависимости определяют характеристики для всей области значений параметров и несут в себе информацию о поведении соответствующих систем при любых сочетаниях параметров. На основе аналитических моделей легко определяются экстремальные и предельные значения характеристик и оцениваются эффекты от изменения параметров. В-третьих, аналитические модели характеризуются наименьшей сложностью вычислений. Это свойство чрезвычайно важно при решении задач синтеза, поскольку оптимизация связана с многократными вычислениями характеристик при различных значениях параметров.

Аналитические методы и модели раскрывают фундаментальные свойства вычислительных систем и составляют ядро теории вычислительных систем.

Имитационные методы. Имитационные методы основаны на представлении порядка функционирования системы в виде алгоритма, который называется имитационной (алгоритмической) моделью. Программа содержит процедуры, регистрирующие состояния имитационной модели и обрабатывающие зарегистрированные данные для оценки требуемых характеристик процессов и моделируемой системы.

b b2

а,

Рис. 7.6. Агрегат как элемент модели

B,

Ф

(1)

B2

Ф

(2)

"3,1.

"3,2

12J

Ф

(3)

3d

а5,1

"5,2

y

B.

5

Ф

(5)

i6j

С5,1 аб,2

Ф

(6)

6,1 z.

c

а

c

2

2

а

c

k

m

С

1,1

z

Рис. 7.7. Агрегатная модель

При построении имитационных моделей широко используется агрегатный подход. Для моделирования заданного класса систем создается набор агрегатов Ф1,...,ФQ -

элементов модели. Агрегаты могут соответствовать элементам систем, например процессорам, оперативным запоминающим устройствам, каналам ввода-вывода, каналам передачи данных и другим, воспроизводя определенные аспекты их функционирования. В


качестве агрегатов могут выступать математические объекты, с помощью которых генерируются и преобразуются необходимые процессы. Так, для моделирования систем на основе сетей массового обслуживания в качестве агрегатов представляются источники потоков заявок, системы массового обслуживания, узлы, управляющие распределением заявок по нескольким направлениям, и т. д. По существу агрегат - описание функции некоторого объекта в аспектах, соответствующих цели моделирования - оценке производительности, надежности и т. д. Функции агрегатов Ф1,...,ФQ представляются в

параметрической форме, т. е. в записи функций используются параметры, характеризующие конкретный объект. Так, параметром процессора является производительность (быстродействие), оперативной памяти - емкость, системы массового обслуживания-дисциплина обслуживания, число каналов и распределение длительности обслуживания. Функция агрегата Фq,q = 1,...,Q, представляется в алгоритмической форме - в виде

процедуры Ф% =(a1,...,ak,Ъ1,с1,...,cm), где параметры a1,...,ak - определяют состояние входов элемента, Ъ1,...,Ъ1 - режим его функционирования и c1,...,cm - состояние выходов элемента. Сколь ни была бы. сложна функция агрегата Ф в модели агрегат выглядит как элемент (рис. 7.6), настраиваемый на заданный режим функционирования множеством параметров Bq =[Ъ1,..., Ъ1} и преобразующий входные воздействия Aq =[a1,..., ak} в

выходные состояния Cq =[c1,...,cm} в соответствии с функцией агрегата Ф и значениями

параметров Bq. Множество агрегатов разного типа [Ф1,..., ФQ} составляет базис

имитационных моделей заданного класса систем.

Имитационная модель собирается из агрегатов путем соединения выходов агрегатов с

входами других агрегатов (рис. 7.7). На рисунке агрегаты обозначены , где - тип и i -

порядковый номер агрегата в модели. Агрегаты Фа и - генераторы, формирующие

воздействия в соответствии с параметрами В1 и В2. Состав агрегатов, структура связей между ними и наборы параметров агрегатов В1,...,В6 определяют модель. Процесс моделирования

состоит в реализации процедурФ(у) в необходимом порядке. При этом значения,

формируемые на выходах агрегатов, переносятся на входы связанных с ними агрегатов, в результате чего вычисляются значения z1 и z2. Путем обработки данных, наблюдаемых в характерных точках модели (на выходах элементов), получают оценки качества функционирования любого из агрегатов и системы в целом.

Имитационные модели воспроизводят процесс функционирования и свойства исследуемых систем исходя из априорно известных свойств элементов системы - за счет объединения моделей элементов в структуру, соответствующую исследуемой системе, и имитации функционирования элементов в их взаимодействии.

Исследование вычислительных систем имитационными методами состоит из нескольких этапов.

1.Определение принципов построения модели. Цель этого этапа - сформировать общий замысел модели (состав характеристик и параметров, подлежащих отображению, область определения модели, требования к точности результатов моделирования, тип математической модели, программные и технические средства для описания и реализации модели). На этом этапе выдвигаются гипотезы о свойствах моделируемой системы, принимаются допущения для использования соответствующих математических методов и конкретизируются эксперименты, проводимые на модели.

2.Разработка модели. Цель этого этапа - создание программы моделирования для ЭВМ. При этом общий замысел модели преобразуется в конкретное алгоритмическое описание. Этап завершается проверкой работоспособности и адекватности модели.

3.Моделирование на ЭВМ. Цель этого этапа - получение с помощью модели данных о поведении исследуемой системы, обработка полученных данных, а при синтезе системы -


выбор параметров, оптимизирующих заданные характеристики системы и удовлетворяющих заданным ограничениям.

Важнейшее свойство метода имитационного моделирования - универсальность, проявляющаяся в следующем. Во-первых, метод имитации позволяет исследовать системы любой степени сложности. Усложнение объекта исследования приводит к увеличению объема данных, вводимых в модель, и времени моделирования на ЭВМ, но при этом принципы построения моделей остаются неизменными. Во-вторых, метод имитации не ограничивает уровень детализации в моделях. С помощью алгоритмов можно воспроизводить любые, сколь угодно своеобразные взаимосвязи между элементами системы и процессы функционирования. Более детальное представление организация и функционирования системы сказывается только на объеме алгоритмического описания модели (программы) и затратах времени на моделирование. Особенности организации и функционирования, препятствующие использования аналитических методов, легко воспроизводятся в имитационных моделях. В-третьих, имитационная модель является неограниченным источником данных о поведения исследуемой системы - новые эксперименты на модели позволяют получать дополнительные данные о системе. За счет этого гарантируется детальная оценка характеристик, функционирования как системы в целом, так и ее составляющих. Как правило, увеличивая длительность экспериментов на моделях или число экспериментов, т. е. время моделирования, можно добиться высокой точности результатов моделирования.

Недостатки имитационных методов - большие затраты времени на моделирование и частный характер получаемых результатов. В имитационной модели процесс функционирования системы воспроизводится во всех существенных для исследования деталях за счет последовательного выполнения на ЭВМ операций над величинами. Число операций, обеспечивающее воспроизведение представленных интервалов функционирования системы, оказывается значительным и при моделировании систем умеренной сложности

8 12

составляет 10 -10 операций на одну реализацию модели. Поэтому при моделировании на ЭВМ, имеющей быстродействие миллион операций в секунду, для одного прогона модели требуются минуты и часы процессорного времени. При этом модель позволяет оценить характеристики системы только в одной точке, соответствующей значениям параметров X, введенных в модель перед началом моделирования. Чтобы определить зависимость между характеристиками и параметрами, необходимы многократные прогоны модели, в результате которых значения Y определяются для многих наборов параметров. Возможности методов оптимизации параметров на имитационных моделях ограничиваются большими затратами времени на моделирование системы в одной точке.

Несмотря на указанные недостатки, методы имитационного моделирования в силу их универсальности широко используются при теоретических исследованиях и проектировании вычислительных систем. Имитационные модели позволяют исследователю к разработчику формировать представления о свойствах системы и, познавая систему через ее модель, принимать обоснованные проектные решения.

Экспериментальные методы. Экспериментальные методы основываются на получении данных о функционировании вычислительных систем в реальных или специально созданных условиях с целью оценки качества функционирования и выявления зависимостей, характеризующих свойства систем и их составляющих. Типичные задачи, решаемые экспериментальными методами,- оценка производительности и надежности системы, определение состава и количественных показателей системной нагрузки в зависимости от прикладной нагрузки и т. д.

Экспериментальные исследования выполняются в следующем порядке:

1.Формулируется цель исследования.

2.Выбирается или разрабатывается методика исследования, которая устанавливает модель исследуемого объекта; способ и средства измерения; способ я средства обработки измерительных данных, а также интерпретация результатов измерений и обработок.



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15] [стр.16] [стр.17] [стр.18] [стр.19] [стр.20] [стр.21] [стр.22] [стр.23] [стр.24] [стр.25] [стр.26] [стр.27] [стр.28] [стр.29] [стр.30] [стр.31] [стр.32] [стр.33] [стр.34] [стр.35] [стр.36] [стр.37] [стр.38] [стр.39] [стр.40] [стр.41] [стр.42] [стр.43] [стр.44] [стр.45] [стр.46] [стр.47] [стр.48] [стр.49] [стр.50] [стр.51] [стр.52] [стр.53] [стр.54] [стр.55] [стр.56] [стр.57] [стр.58] [стр.59]