Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[47]

обслуживания. Сетевые характеристики оценивают функционирование сети в целом и включают в себя:

1)загрузку - среднее по времени число заявок, обслуживаемых сетью, и одновременно среднее число приборов (каналов), занятых обслуживанием;

2)число заявок, ожидающих обслуживания в сети;

3)число заявок, находящихся в сети (в состоянии, ожидания и обслуживания);

4)суммарное время ожидания заявки в сети;

5)суммарное время пребывания заявки в сети.

Теория массового обслуживания предлагает способы расчета характеристик сетей различных типов, а также способы выбора параметров сетей, обеспечивающих заданные характеристики функционирования.

Для воспроизведения в моделях различных способов организации процессов функциональные возможности сетей массового обслуживания расширяются путем включения в сети специальных узлов. Так, для отображения эффектов, связанных с использованием запоминающих устройств, в сетевые модели включаются узлы, моделирующие работу запоминающих устройств, - узлы памяти. Память характеризуется емкостью, которая распределяется между заявками. Обслуживание заявки, поступившей на вход узла памяти, сводится к выделению затребованного числа ячеек памяти. Если в памяти, отсутствует область требуемого размера, заявка ставится в очередь и ожидает момента освобождения памяти, предоставленной ранее поступившим заявкам. Возможности сети могут расширяться за счет использования специальных узлов, управляющих маршрутами заявок: направляющих заявку одновременно по нескольким маршрутам; синхронизирующих движение заявок; изменяющих атрибуты заявок и т. д. Сети, воспроизводящие процессы массового обслуживания в форме взаимодействия систем массового обслуживания и дополнительных узлов, моделирующих работу памяти (накопителей), источников и приемников заявок и процессы маршрутизации заявок, называются стохастическими сетями. Стохастические сети включают в себя сети массового обслуживания как один из вариантов организации процессов массового обслуживания.

В отличие от систем массового обслуживания, стохастические сети, в том числе и сети массового обслуживания, воспроизводят процессы многоэтапного обслуживания, когда обслуживание заявки производится за счет последовательного обращения к ресурсам, в том числе и многократного. Характерное свойство сети - ее структурное подобие реальной системе. Состав узлов сети л конфигурация связей между ними соответствует составу устройств и порядку их взаимодействия в реальной системе. За счет этого значительно упрощается процесс построения сетевых моделей и обеспечивается адекватность процессов функционирования сетей и моделируемых ими систем.

Статистические модели. В тех случаях, когда причинно-следственные отношения в исследуемом объекте трудно охарактеризовать из-за их многообразия, сложности и невыясненной природы процессов или когда эти отношения несущественны, а желательно представить свойства объекта в достаточно компактной форме, используются статистические методы для математического выражения зависимостей между характеристиками и параметрами объекта. Статистические методы - совокупность способов сбора, анализа и интерпретации данных о некотором объекте или совокупности объектов с целью получения теоретических или практических выводов.

Сущность статистических методов состоит в следующем. На основе эмпирических представлений о свойствах, исследуемого объекта и в соответствии с целью исследования определяется состав признаков, характеризующих объект, и тип статистической модели (математические выражения, структуры). Признаки, посредством которых описывается объект,- величины, соответствующие параметрам x1,..., xN и характеристикам y1,...,yM

объекта. Наблюдением (измерения, регистрация) собираются статистические данные, образующие выборку следующего вида:


Номер наблюдения

1

1

i2)

N

x(2)

У

.(2)

У1

Ум

м

ДО

где x1xN),y}!)yMM - значения признаков при i-м наблюдении.

На основе этой выборки строится статистическая модель устанавливающая количественную взаимосвязь признаков.

Математическая статистика предлагает обширный набор моде лей и методов установления статистических закономерностей, присущих исследуемым объектам. Наиболее широкое применение при исследовании вычислительных систем получил регрессионный анализ.

м

заданного типа,

У

м

2

n

Регрессионный анализ состоит, в построении функций yt = fi (x1,...,xN) связывающих

характеристики (зависимые переменные) с параметрами (независимыми переменными), на основе статистической выборки, содержащей статистически независимые данные. Статистическая независимость данных состоит в том, что значения признаков разных наблюдений статистической выборки не должны зависеть друг от друга. Чтобы проявились статистические зависимости, число наблюдений должно превосходить число признаков в 6-8 раз. Выборка должна быть однородной, т. е. относиться к объектам одного класса.

Зависимость характеристики от параметров x1, ... , xN представляется в виде линейного полинома

y = b0 + b1 x1 + ... + bNXN(7.9)

а при необходимости - в виде полинома более высокого порядка

y = b0 + b1 x +... + bNxN + b12 x1x2 + b13 x1x3 +... + b1Nx1xN +... + b123 x1 x2x3 +... + b11 x12 +...

Параметры b называются коэффициентами регрессии. Если число признаков n=1, то (7.9) называют уравнением парной регрессии, если n>2, - уравнением множественной регрессии. Переменная у рассматривается как случайная величина, которая распределена в окрестности среднего значения y, зависящего от х, т. е. считается, что переменные влияют лишь на среднее значение

y

дисперсии отклонения уравнения регрессии от наблюдаемых значений y(i), i = 1,n .

При построении регрессионной модели основными являются два момента: 1) выбор числа независимых признаков x1 , ... , xN ; 2) выбор формы полинома, посредством которого представляется

зависимость y = fxN). Процедуры оценки качества и совершенствования моделей

реализованы в пакетах прикладных программ статистического анализа, используемых при исследованиях.

Регрессионные модели обладают следующими особенностями. Во-первых, они применимы для прогноза значений у только при аргументах x1,... , xN , принадлежащих области определения

переменных, для которой построено уравнение регрессии. Во-вторых, уравнения регрессии принципиально необратимы, т. е. недопустимо путем тождественных преобразований из уравнения

y = f (x1,...,xN) строить уравнение =<р(x1,...,xN,y), поскольку это две совершенно различные регрессии, каждая из которых должна строиться самостоятельно. Дополнительно отметим, что


регрессионные модели не раскрывают механизм взаимосвязи характеристик и параметров и фиксируют лишь количественную взаимосвязь величин.

Регрессионные и другие статистические модели наиболее широко используются для описания рабочей нагрузки, создаваемой прикладными задачами, а также системными процессами (управление заданиями, задачами, данными, ввод - вывод и др.). Применение статистических методов для этого класса объектов объясняется тем, что хотя рабочая нагрузка, как правило, хорошо наблюдаема, однако по своей природе - это чрезвычайно сложный объект. В нем совмещены свойства прикладных задач, технология обработки данных, организация операционной системы и даже конфигурация ЭВМ, для которой разрабатывается программное обеспечение. Поэтому рабочую нагрузку приходится рассматривать как черный ящик и описывать количественные взаимосвязи статистическими методами. Регрессионные модели применяются также для компактного представления и анализа зависимостей, воспроизводимых на имитационных моделях.

Аналитические методы. Аналитические методы исследования вычислительных систем сводятся к построению математических моделей, которые представляют физические свойства как математические объекты и отношения между ними, выражаемые посредством математических операций. При использовании аналитических методов оператор F, устанавливающий зависимость Y = F(X) между характеристиками и параметрами объекта, представляется совокупностью математических выражений (формул) - алгебраических, дифференциального и интегрального исчисления и др. Модели, построенные этими методами, называются аналитическими моделями. В таких моделях зависимость между характеристиками и параметрами может быть представлена в явной аналитической форме - в виде выражений ym = fm (x1,...,xN), решенных относительно искомых величин, или в неявной

форме - в виде уравнений Ф(Т, Х)=0, связывающих характеристики и параметры.

При построении аналитических моделей свойства объектов описываются исходя из свойств составляющих - физических элементов или элементарных процессов. Для этого используется подходящий математический аналог и с помощью соответствующего математического аппарата строятся выражения, которые связывают показатели, характеризующие элементы. Последовательным применением математических правил совокупность выражений, моделирующих свойства элементов, сводится к форме, представляющей зависимость Y=F(X) между характеристиками и параметрами всей системы.

Как правило, свойства элементов и систем удается представить в аналитической форме, если принимаются определенные допущения о свойствах и поведении описываемых объектов: независимость одних факторов от других, линейность некоторых зависимостей, мгновенность переходов между состояниями и т. д. Если допущения соответствуют реальности, модель хорошо воспроизводит зависимость между характеристиками и параметрами. Однако во многих случаях допущения приводят к существенным отличиям модели от реального объекта, вследствие чего моделируемая зависимость существенно отличается от реальной и характеристики представляются на модели с большой погрешностью. Так, предположение о том, что процессы обладают марковским свойством, может оказаться ошибочным, что приводит к большим погрешностям марковских моделей и даже к неверным оценкам. Основные аналитические методы теории массового обслуживания базируются на предположении, что интервалы времени между заявками входящих потоков и длительности обслуживания распределены по экспоненциальному закону. Когда это предположение выполняется, аналитические методы позволяют точно оценивать характеристики системы. Если же потоки и длительности существенно отличаются от предполагаемых, моделируемые характеристики могут сколь угодно отличаться от реальных.

Таким образом, аналитические модели, базируясь на допущениях о свойствах объектов, применимы для исследования только тех систем, в отношении которых справедливы принятые допущения. Многие системы из-за специфики своей организации недоступны для исследования аналитическими методами.

Ценность аналитических методов и моделей для теории и практики обусловлена следующими причинами. Во-первых, зависимости, полученные аналитическими методам»,



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15] [стр.16] [стр.17] [стр.18] [стр.19] [стр.20] [стр.21] [стр.22] [стр.23] [стр.24] [стр.25] [стр.26] [стр.27] [стр.28] [стр.29] [стр.30] [стр.31] [стр.32] [стр.33] [стр.34] [стр.35] [стр.36] [стр.37] [стр.38] [стр.39] [стр.40] [стр.41] [стр.42] [стр.43] [стр.44] [стр.45] [стр.46] [стр.47] [стр.48] [стр.49] [стр.50] [стр.51] [стр.52] [стр.53] [стр.54] [стр.55] [стр.56] [стр.57] [стр.58] [стр.59]