Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[36]

которого изображена на рис. 6.7, г. Значение 1 представляется переключением сигнала, например из 0 в 1, и тогда значение 0 - переключением сигнала из I в 0. Момент переключения сигнала отмечает середину такта, а направление переключения определяет значение передаваемого бита. В момент первого переключения сигнала приемник запускает систему синхронизации, которая разрешает

прием сигнала в промежутке времени [т -8,T + S],8 < т/2, следующем за моментом поступления

предыдущего сигнала. Сигнал, поступивший в этом промежутке времени, несет значение бита 0 или 1 и одновременно используется как очередной сигнал синхронизации. На основе его выделяется

следующий промежуток времени [т - 8, т + 8], в течение которого приемник готов принять очередной бит данных.

Столкновение

Передача

V

Прием

Л

Моноканал

Рис. 6.8. Формирование сигнала о столкновении

Организация моноканалов. Наиболее существенные аспекты организации моноканала: 1) конфигурация ЛВС; 2) способ доступа к каналу; 3) протоколы управления физическим и информационным каналом. Эффективность организации моноканала характеризуется следующими основными показателями: 1) затратами оборудования в адаптере, зависящими от конфигурации ЛВС и протоколов канального уровня; 2) пропускной способности; 3) средней задержкой передачи данных; 4) надежностью, связанной в первую очередь с сохранением работоспособности моноканала при отказах отдельных адаптеров и систем сети. Значимость показателей эффективности зависит от области применения сети: в сетях персональных ЭВМ наиболее значимым может быть показатель затрат оборудования, а в производственных и бортовых системах - надежность моноканала.

Моноканалы ЛВС строятся из соображений надежности в основном по принципу распределенного управления доступом к каналу, поскольку при централизованном управлении выход из строя контроллера канала является катастрофическим для сети в целом. При распределенном управлении все станции, подключенные к каналу, функционируют одинаковым образом, получая информацию о занятости и освобождении канала только исходя из состояния физического канала. В этом случае для каждой станции канал является равнодоступным средством передачи данных, порядок доступа к которому определяется соответствующим протоколом. Прием данных производится путем селекции - выделения из множества данных тех, которые адресованы конкретной системе.

Различают три основных способа доступа к моноканалу: свободный, управляемый и комбинированный доступ. При свободном (случайном) доступе каждая система захватывает канал для передачи данных в произвольный момент времени. Если две или более системы одновременно передают данные в канал, за счет интерференции сигналов данные искажаются и подлежат повторной передаче, момент которой назначается по специальному, алгоритму. Управляемый (детерминированный) доступ основан на поочередном предоставлении системам разрешения на передачу данных. Комбинированный доступ основан на использовании свободного и управляемого доступа к каналу на разных фазах


работы систем. В ЛВС с магистральной структурой наиболее широко используется свободный, а с кольцевой структурой - управляемый доступ.

Свободный доступ с проверкой столкновений (СДПС). Этот способ наиболее широко применяется в магистральных структурах. Система захватывает канал и начинает передачу в любой момент времени. Поскольку централизованное управление отсутствует, две и более системы могут вести передачу пакетов одновременно. В этом случае происходит столкновение - интерференция пакетов, передаваемых одновременно, в результате чего все передаваемые пакеты искажаются. Столкновения обнаруживаются путем приема каждой системой передаваемого ею пакета (рис. 6.8). При этом биты, передаваемые в канал, сравниваются с битами, принимаемыми из канала. Если регистрируется несовпадение переданного и принятого бита, это свидетельствует о столкновении пакетов в канале. При обнаружении столкновения система прекращает передачу пакета и повторяет передачу через некоторое время. Для того чтобы уменьшить вероятность повторных столкновений, каждая система начинает повторную передачу через случайный промежуток времени с достаточно большим средним значением т. Задержка передачи формируется как случайная величина, равномерно распределенная в интервале [0, ттах ], где Ттах - максимальная задержка повторной передачи.

Из-за столкновений реальная пропускная способность моноканала оказывается меньше номинальной пропускной способности физического канала. В целях упрощения математических выражений пропускные способности оценивают числом пакетов, передаваемых за время Т, достаточное для передачи одного пакета по физическому каналу. Время передачи одного, пакета по физическому каналу Т называют окном,. Окно T=L[V, где L - длина пакета (точнее, кадра), бит, и V - пропускная способность физического канала, бит/с. С учетом сказанного пропускная способность моноканала S характеризуется средним числом пакетов, передаваемых в одном окне. Очевидно, что S < 1.

Пропускная способность моноканала при СДПС оценивается следующим образом. Столкновения исключаются, если в течение периода 2Т, называемого периодом уязвимости, передается только один пакет (рис. 6,9). Если в течение периода уязвимости будет передаваться еще один пакет, который начинается либо в первом окне, либо во втором, происходит столкновение. Для наиболее простой оценки предположим, что поток запросов на передачу создается бесконечным числом систем, работающих независимо друг от друга и в результате этого порождающих пуассоновский поток запросов с суммарной интенсивностью G запросов на одно окно. Вероятность передачи пакета без столкновения определяется вероятностью поступления в период уязвимости

только одного пакета и равна q = e~2G . Следовательно, только g-я часть пакетов будет передана без искажений и интенсивность потока неискаженных пакетов.

S = Ge-2G(6.1)

Значение S характеризует пропускную способность моноканала, зависимость которой от интенсивности потока запросов G представлена на рис. 6.10 кривой СДПС. Максимум пропускной способности достигается при G=0,5 запросов на окно и составляет

S = 1/(2e) « 0,184 пакета на одно окно.(6.2)

Таким образом, СДПС позволяет использовать для передачи данных не более 18,4 % пропускной способности канала.

При конечном числе систем М пропускная способность моноканала

S = G (1 - G / M f-1(6.3)


Т

Т

Пакет

/

t

1-

Рис. 6.9. Период уязвимости пакета при СДПС

S

Рис. 6.10. Скорость передачи пакетов При M - оо эта зависимость принимает вид (6.1).

Задержка пакетов зависит от числа попыток передачи пакета, от задержки повторной передачи и является случайной величиной. Отношение q = S / G характеризует долю пакетов, передаваемых без искажений, т. е: вероятность передачи без столкновений. Число попыток до успешной передачи - геометрически распределенная случайная величина pn = (1 - q) q,n = 1,2,... Величина рп - вероятность передачи пакета с n-й попытки. Среднее число попыток

n = 1/q = G / S(6.4)

и средняя задержка пакета при передаче через моноканал

U = ПТ + T = GT + T(6.5)

S

где т - средняя задержка повторной передачи.

Обычно значение T представляют в нормированном виде - в числе окон длительностью Т. В таком случае нормированная средняя задержка пакета, определяемая числом окон,

UH = G тн +1(6.6)

где TH - нормированная задержка повторной передачи.

Обратим внимание на зависимость интенсивности запросов G от задержки передачи: чем меньше TH, тем больше интенсивность запросов g, поскольку каждая система с уменьшением TH

начинает чаще обращаться к каналу. Если попытаться уменьшить задержку, интенсивность запросов возрастет и скорость передачи пакетов S будет отставать от скорости запросов на передачу данных. Это приведет к тяжелым последствиям: возрастет число пакетов, ожидающих передачи, увеличится задержка передачи пакетов, а скорость передачи будет уменьшаться до весьма малых значений, в результате чего система потеряет устойчивость. Чтобы избежать этого, необходимо ограничивать



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15] [стр.16] [стр.17] [стр.18] [стр.19] [стр.20] [стр.21] [стр.22] [стр.23] [стр.24] [стр.25] [стр.26] [стр.27] [стр.28] [стр.29] [стр.30] [стр.31] [стр.32] [стр.33] [стр.34] [стр.35] [стр.36] [стр.37] [стр.38] [стр.39] [стр.40] [стр.41] [стр.42] [стр.43] [стр.44] [стр.45] [стр.46] [стр.47] [стр.48] [стр.49] [стр.50] [стр.51] [стр.52] [стр.53] [стр.54] [стр.55] [стр.56] [стр.57] [стр.58] [стр.59]