|
|||||||||||||||||||||||||||||||||||||||||||||
Меню:
Главная
Форум
Литература: Программирование и ремонт Импульсные блоки питания Неисправности и замена Радиоэлектронная аппаратура Микросхема в ТА Рубрикатор ТА Кабельные линии Обмотки и изоляция Радиоаппаратура Гибкие диски часть 2 часть 3 часть 4 часть 5 Ремонт компьютера часть 2 Аналитика: Монтаж Справочник Электроника Мощные высокочастотные транзисторы 200 микросхем Полупроводники ч.1 Часть 2 Алгоритмические проблемы 500 микросхем 500 микросхем Сортировка и поиск Монады Передача сигнала Электроника Прием сигнала Телевидиние Проектирование Эвм Оптимизация Автомобильная электроника Поляковтрансиверы Форт Тензодатчик Силовые полевые транзисторы Распределение частот Резисторные и термопарные Оберон Открытые системы шифрования Удк |
[3] обеспечивающими информационное взаимодействие между процессами в разных ЭВМ. Типичная структура ЛВС изображена на рис. 1.5. Сопрягаются ЭВМ с помощью моноканала - единого для всех ЭВМ сети канала передачи данных. В моноканале наиболее широко используются скрученная пара проводов, коаксиальный кабель или волоконно-оптическая линия. Длина моноканала не превышает обычно нескольких сотен метров. При этом пропускная способность моноканала составляет 10-10 бит/с, что достаточно для обеспечения информационной связи между десятками ЭВМ. ЭВМ сопрягаются с моноканалом с помощью сетевых адаптеров (СА), иначе контроллеров, реализующих операции ввода - вывода данных через моноканал. Наличие в сети единственного канала для обмена данными между ЭВМ существенно упрощает процедуры установления соединений и обмена данными между ЭВМ. Поэтому сетевое программное обеспечение ЭВМ оказывается более простым, чем в вычислительных сетях, содержащих сеть передачи данных, и легко встраивается даже в микро-ЭВМ. Вследствие этого локальные вычислительные сети оказываются эффективным средством построения сложных СОД на основе микро- и мини- ЭВМ. ![]() Терминалы пользователей О
О
Моноканал Рис. 1.5. Локальная вычислительная сеть Терминалы пользователей Локальные вычислительные сети получают широкое применение в системах автоматизации проектирования и технологической подготовки производства, системах управления производством, транспортом, снабжением и сбытом (учрежденческих системах), а также и системах автоматического управления технологическим оборудованием, создаваемых на основе микро- и мини-ЭВМ, в частности в гибких производственных системах. Классификация СОД. Классифицируются СОД в зависимости от способа построения (рис. 1.6). СОД, построенные на основе отдельных ЭВМ, вычислительных комплексов и систем, образуют класс сосредоточенных (централизованных) систем, в которых вся обработка реализуется ЭВМ, вычислительным комплексом или специализированной системой. Системы телеобработки и вычислительные сети относятся к классу распределенных систем, в которых процессы обработки данных рассредоточены по многим компонентам. При этом системы телеобработки считаются распре деленными в некоторой степени условно, поскольку основные функции обработки данных здесь реализуются централизованно - в одной ЭВМ или вычислительном комплексе. Существенное влияние на организацию СОД оказывают технические возможности средств, используемых для сопряжения (комплексирования) ЭВМ. Основным элементом сопряжения является интерфейс, определяющий число линий для передачи сигналов и данных и способ (алгоритм) передачи информации 110 линиям. Все интерфейсы, используемые в вычислительной технике и связи, разделяются на три класса: параллельные, последовательные и связные (рис. 1.7). Параллельный интерфейс состоит из большого числа линий, данные по которым передаются в параллельном коде - обычно в виде 8 - 128-разрядных слов. Параллельные интерфейсы имеют большую пропускную способность, как правило, 106-108 бит/с. Столь большие скорости передачи данных обеспечиваются за счет ограниченной длины интерфейса, которая обычно составляет от нескольких метров до десятков метров и в редких случаях достигает сотни. Последовательный интерфейс состоит, как правило, из одной линия, данные по которой передаются в последовательной ходе. Пропускная способность последовательных интерфейсов обычно составляет 10-10 бит/с при длине линии от десятков метров до километра. Связные интерфейсы содержат каналы связи, работа которых обеспечивается аппаратурой передачи данных, повышающей (в основном с помощью физических методов) достоверность передачи. Связные интерфейсы обеспечивают передачу данных на любые расстояния, однако с небольшой скоростью - в пределах от 103 до 105 бит/с. Применение связных интерфейсов экономически оправдывается на расстояниях, не меньших километра. Системы обработки данных ![]() Я) Вычислительные комплексы ![]() ![]() Сосредоточенные системы ![]() -- Вычислительные сети 2 •г «3 Распеределенные системы Рис. 1.6. Классификация СОД Параллельные интерфейсы
10-4 10-3 10-2 10-1 101 102 103 104 км 1 ![]() ![]() Рис. 1.7. Характеристики интерфейсов В сосредоточенных системах применяются в основном параллельные интерфейсы, используемые для сопряжения устройств и построения многомашинных и многопроцессорных комплексов, и только в отдельных случаях, чаще для подключения периферийных устройств, применяются последовательные интерфейсы. Параллельные интерфейсы обеспечивают передачу сигналов прерывания, отдельных слов и блоков данных между сопрягаемыми ЭВМ и устройствами. В распределенных системах из-за значительности расстояний между компонентами применяются последовательные и связные интерфейсы, которые исключают возможность передачи сигналов прерывания между сопрягаемыми устройствами и требуют представления данных в виде сообщений, передаваемых с помощью операций ввода - вывода. Различие способов предъявления данных в параллельных, последовательных и связных интерфейсах и в пропускной способности интерфейсов существенно влияет на организацию обработки данных и, следовательно, программного обеспечения СОД. 1.2. СОСТАВ И ФУНКЦИОНИРОВАНИЕ Системы обработки данных строятся из технических и программных средств, существенно различающихся по своей природе. Поэтому СОД принято рассматривать как совокупность двух составляющих: технических средств и программного обеспечения. Функционирование СОД определяется взаимодействием программных и технических средств, в результате чего свойства системы проявляются как совокупные свойства технических и программных средств. Технические средства. Основу СОД составляют технические средства -оборудование, предназначенное для ввода, хранения, преобразования и вывода данных. Состав технических средств определяется структурой (конфигурацией) СОД, т. е. тем, из каких частей (элементов) состоит система и каким образом эти части связаны между собой. Математическая форма представления структуры - граф, вершины которого соответствуют элементам системы, а ребра (дуги) - связи между элементами. Инженерная форма представления структуры - схема. Таким образом, схема и граф тождественны по содержанию и различны по форме. В схеме для изображения элементов используются различные геометрические фигуры, а для изображения связей - линии многих типов. За счет этого схема приобретает большую по сравнению с графом наглядность. Основные элементы структуры СОД - устройства: процессоры, устройства запоминающие ввода - вывода, сопряжения с объектами и др. Устройства, связываются с помощью интерфейсов, включающих в себя совокупность линий или каналов передачи данных (линий связи). Пример структуры, представленной на уровне устройств, приведен на рис. 1.8. В состав рассматриваемого комплекса входят две ЭВМ, каждая из которых снабжена тремя каналами ввода -вывода МКО, СК1 и СК2, двумя накопителями на магнитных дисках НМД1 и НМД2 и дисплеями Д1 и Д2, подключенными через контроллер КД к мультиплексному каналу МКО. Машины связаны с общим для них набором внешних запоминающих устройств - накопителями на магнитных дисках НМДЗ и НМД4 и магнитных лентах НМЛ1 - НМЛ4, которые подключены к селекторным каналам СК2 через соответствующие контроллеры КНМД и КНМЛ. К ЭВМ подключены мультиплексоры передачи данных МПД1 и МПД2, каждый из которых обслуживает четыре какала связи КС1 - КС4 и КС5 - КС8. На рисунке линиями представлены следующие интерфейсы: интерфейс прямого управления, сопрягающий процессоры ЭВМ1 и ЭВМ2; интерфейсы оперативной памяти, связывающее оперативную память с процессором и каналами ввода - вывода МК0, СК1 в СК2; интерфейсы ввода - вывода, связывающие каналы ввода - вывода с контроллерами запоминающих устройств и устройств ввода - вывода; малые интерфейсы, посредством которых накопители и устройства ввода - вывода подключаются к соответствующим контроллерам. Структура сложных систем при представлении ее на уровне устройств может оказаться настолько сложной, что теряет обозримость и выходит за рамки возможностей методов исследования, используемых при анализе и синтезе систем. В таких случаях структура описывается на более высоком уровне, когда в качестве элементов выступают ЭВМ, многопроцессорные комплексы и сложные подсистемы, которые изображаются одной вершиной графа. Таким образом, элемент структуры СОД - это прежде всего удобное понятие, но не физическое свойство объекта. Главное требование к изображению структуры - информативность. |
Среды: Smalltalk80 MicroCap Local bus Bios Pci 12С ML Микроконтроллеры: Atmel Intel Holtek AVR MSP430 Microchip Книги: Емкостный датчик 500 схем для радиолюбителей часть 2 (4) Структура компьютерных программ Автоматическая коммутация Кондиционирование и вентиляция Ошибки при монтаже Схемы звуковоспроизведения Дроссели для питания Блоки питания Детекторы перемещения Теория электропривода Адаптивное управление Измерение параметров Печатная плата pcad pcb Физика цвета Управлении софтверными проектами Математический аппарат Битовые строки Микроконтроллер nios Команды управления выполнением программы Перехода от ahdl к vhdl Холодный спай Усилители hi-fi Электронные часы Сердечники из распылённого железа Анализ алгоритмов 8-разрядные КМОП Классификация МПК История Устройства автоматики Системы и сети Частотность Справочник микросхем Вторичного электропитания Типы видеомониторов Радиобиблиотека Электронные системы Бесконтекстный язык Управление техническими системами Монтаж печатных плат Работа с коммуникациями Создание библиотечного компонента Нейрокомпьютерная техника Parser Пи-регулятор ч.1 ПИ-регулятор ч.2 Обработка списков Интегральные схемы Шина ISAВ Шина PCI Прикладная криптография Нетематическое: Взрывной автогидролиз Нечеткая логика Бытовые установки (укр) Автоматизация проектирования Сбор и защита Дискретная математика Kb радиостанция Энергетика Ретро: Прием в автомобиле Управление шаговым двигателем Магнитная запись Ремонт микроволновки Дискретные системы часть 2 | |||||||||||||||||||||||||||||||||||||||||||