Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[25]

ячеек ЗМ и содержимое сравнивается с первым разрядом РгАП. Если содержимое первого разряда i-й ячейки не совпадает с содержимым первого разряда РгАП, то соответствующий этой ячейке разряд регистра индикаторов адреса Ti сбрасывается в состояние 0, если совпадает, - на Ti остается 1. Затем эта операция повторяется со вторым, третьим и последующими разрядами до тех пор, пока не будет произведено сравнение со всеми разрядами РгАП. После поразрядного опроса и сравнения в состоянии 1 останутся те разряды регистра индикаторов адреса, которые соответствуют ячейкам, содержащим информацию, совпадающую с записанной в РгАП. Эта информация может быть считана в той последовательности, которая определяется устройством управления.

Заметим, что время поиска информации в ЗМ по ассоциативному признаку зависит только от числа разрядов признака и от скорости опроса разрядов, но совершенно не зависит от числа ячеек ЗМ. Этим и определяется главное преимущество АЗУ перед адресными ЗУ: в адресных ЗУ при операции поиска необходим перебор всех ячеек запоминающего массива.

Запись новой информации в ЗМ производится без указания номера ячейки. Обычно один из разрядов каждой ячейки используется для указания ее занятости, т. е. если ячейка свободна для записи, то в этом разряде записан 0, а если занята, - 1. Тогда при записи в АЗУ новой информации устанавливается признак 0 в соответствующем разряде РгАП и определяются все ячейки ЗМ, которые свободны для записи. В одну из них устройство управления помещает новую информацию.

Нередко АЗУ строятся таким образом, что кроме ассоциативной допускается и прямая адресация данных, что представляет определенные удобства при работе с периферийными устройствами.

Необходимо отметить, что запоминающие элементы АЗУ в отличие от элементов адресуемых ЗУ должны не только хранить информацию, но и выполнять определенные логические функции, поэтому позволяют осуществить поиск не только по равенству содержимого ячейки заданному признаку, но и по другим условиям: содержимое ячейки больше (меньше) признака РгАП, а также больше или равно (меньше или равно).

Отмеченные выше свойства АЗУ характеризуют преимущества АЗУ для обработки информации. Формирование нескольких потоков идентичной информации с помощью АЗУ осуществляется быстро и просто, а с большим числом операционных элементов можно создавать высокопроизводительные системы. Надо учитывать еще и то, что на основе ассоциативной памяти легко реализуется изменение места и порядка расположения информации. Благодаря этому АЗУ является эффективным средством формирования наборов данных.

Исследования показывают, что целый ряд задач, таких, как обработка радиолокационной информации, распознавание образов, обработка различных снимков и других задач с матричной структурой данных, эффективно решается ассоциативными системами. К тому же программирование таких задач для ассоциативных систем гораздо проще, чем для традиционных.

Наиболее характерным представителем группы ассоциативных вычислительных систем является система STARAN, разработанная в США. От матричных систем, описанных выше, она отличается не только наличием ассоциативной памяти, но и другими особенностями, ассоциативная память является памятью с многомерным доступом, т. е. в нее можно обратиться как поразрядно, так и пословно, операционные процессорные элементы предусмотрены для каждого слова памяти; имеется уникальная схема перестановок для перегруппировки данных в памяти.

Основным элементом системы является многомерная ассоциативная матрица -ассоциативный модуль (АМ), который представляет собой квадрат из 256 разрядов на 256 слов, т. е. содержит в общей сложности 65536 бит данных. Для обработки информации имеется 256 процессорных элементов, которые последовательно, разряд за разрядом, обрабатывают слова (рис. 3.9). Все ПЭ работают одновременно, по одной команде, выдаваемой устройством управления. Таким образом, сразу по одной команде обрабатываются все выбранные по определенным признакам из памяти слова.


Схема перестановок позволяет сдвигать и перегруппировывать данные так, чтобы над словами, хранящимися в памяти, можно было выполнять параллельно арифметические и логические операции. Большая часть операций выполняется в отношении каждого из 256-разрядных слов. Операции, в которых участвуют несколько слов, используются достаточно редко. Обычно 250-разрядное слово ассоциативной матрицы разбивается программистом на поля переменной длины, и в процессе обработки именно над этими полями производятся и арифметические и логические действия.

255

Разряд

255

.........шшшшшшш

254

255

-*\ ПЭО -*\ ПЭ1

-*\ ПЭ254 -*\ ПЭ255

0

0

0

1

Рис. 3.9. Процессорная обработка в системе STARAN

Базовая конфигурация системы STARAN содержит один AM. Однако число этих модулей можем варьироваться в системе от 1 до 32. Таким образом, при максимальной комплектации в системе может подвергаться acсоциативной обработке 256 кбайт информации. Скорость поиска и обработки информации 256 процессорными элементами высока, и остальные элементы системы спроектированы так, чтобы поддерживать эту скорость.

Устройство управления ассоциативными модулями организует выполнение операций над данными по командам, хранящимся в управляющей памяти. Оно может выбирать несколько рабочих подмножеств из общего множества данных, хранимых в AM, и выполнять над этими подсистемами операции, не затрагивая остальную информацию.

Управляющая память разделена на шесть секций: первая (емкостью 612 слов) - память библиотеки подпрограмм; вторая и третья (512 слов) память команд; четвертая (512 слов) -быстродействующий буфер данных; пятая (16384 слов) - основная память; шестая (10720 слов) -область памяти для прямого доступа. Длина одного слова - 32 разряда. Первые четыре секции выполнены на интегральных схемах и имеют высокое быстродействие с длительностью цикла памяти около 200 нс. Вторая и третья секции (память команд) работают попеременно: одна выдает команды в УУ, а другая в это время загружается от страничного устройства и наоборот. Пятая и шестая секции выполнены на ферритовых сердечниках, длительность цикла примерно 1 мкс. При необходимости емкость пятой секции может быть удвоена. Страничное устройство загружает первые три секции памяти информацией из быстродействующего буфера, основной памяти или памяти прямого доступа.

Последовательный контроллер ассоциативной системы является обычной однопроцессорной ЭВМ типа РДР-11 и обеспечивает работу в режиме трансляции и отладки программ; первоначальную загрузку управляющей памяти, связь между оператором и системой; управление программами обработки прерываний по ошибкам, а также программами технической диагностики обслуживания. Последовательный контроллер снабжен памятью (емкость 8 кслов), печатающим устройством, перфоленточпым вводом - выводом и имеет интерфейс, обеспечивающий связь с другими элементами системы.

Подсистема ввода - вывода обеспечивает возможность подключения к системе STARAN других вычислительных устройств и разнообразного периферийного оборудования. Имеются четыре вида интерфейсов: прямой доступ к памяти; буферизованный ввод - вывод; параллельный ввод -вывод;. логическое устройство внешних функций. Прямой доступ к памяти позволяет использовать память внешней (несистемной) ЭВМ как часть управляющей памяти системы. Эта память становится таким образом доступной как для внешней ЭВМ, так и для системы SPARAN. При этом нет необходимости в буферизации передаваемой между ними информации.

Интерфейс прямого доступа может использоваться и для подключения внешней памяти. Буферизованный ввод - вывод используется для связи системы со стандартными периферийными устройствами, обмен производится блоками данных или программ. Этот интерфейс может использоваться и для связи с несистемной ЭВМ, однако прямой доступ там все-таки предпочтителен,


так как обмен производится быстрее и нет необходимости формирования информации в блоки перед передачей. Параллельный ввод - вывод, который включает в себя по 256 входов и 256 выходов для каждой матрицы, является важной составной частью подсистемы ввода - вывода. Он позволяет увеличить скорость передачи данных между матрицами, обеспечить связь системы с высокоскоростными средствами ввода - вывода и непосредственную связь любого устройства с ассоциативными модулями. С помощью параллельною ввода - вывода можно, в частности, подключать, к ассоциативным матрицам накопители на магнитных дисках, что позволяет быстро вводить и выводить большие объемы информации.

Совокупность всех перечисленных средств, входящих в систему STARAN, позволяет выполнять одновременно сотни и тысячи одинаковых операций при решении определенных классов задач.

3.4. ОДНОРОДНЫЕ СИСТЕМЫ И СРЕДЫ

В предыдущих параграфах был рассмотрен ряд вычислительных систем, при построении которых используются различные возможности по организации параллельной обработки. Во всех этих системах не ставится никаких условии или ограничений относительно состава и функций устройств, а также связей между ними.

В начале 00-х годов Э. В. Евреинов и Ю. Г. Косарев предложили несколько другой подход к построению систем, в основе которого три принципа: параллельность операций; переменность логической структуры; конструктивная однородность элементов и связей между ними.

Первый принцип базируется на аксиоме параллельности задач и алгоритмов: всякая сложная задача может быть представлена в виде связанных между собой простых подзадач и для любой сложной задачи может быть предложен параллельный алгоритм, допускающий ее эффективное решение. Аксиома параллельности, таким образом, обеспечивает достижение высокой производительности за счет параллельной работы большого числа обрабатывающих устройств или элементов.

Второй принцип базируется на аксиоме переменности логической структуры: процесс решения сложной задачи может быть представлен некоторой структурной моделью, включающей в себя подзадачи и связи между ними. Это означает, что для каждой сложной задачи можно предложить соответствующую структуру из обрабатывающих элементов, связанных между собой определенным образом.

Трети принцип базируется на аксиоме конструктивной однородности элементов и связей: все простые задачи получаются путем деления сложной задачи на части, а поэтому все эти простые задачи примерно одинаковы по объему вычислении и связаны между собой одинаковыми схемами обмена. Это означает, что система для решения сложной задачи может быть построена из одинаковых обрабатывающих элементов, связанных между собой одинаковым образом.

Таким образом, при соблюдении трех принципов вычислительная система может быть представлена как совокупность неограниченного числа одинаковых обрабатывающих устройств, однотипно связанных между собой. Эта совокупность перед решением задачи настраивается соответствующим образом. Такая однородная вычислительная система должна решать задачи неограниченной сложности и объема при высокой надежности и готовности, что обеспечивается избыточностью обрабатывающих устройств, унифицированностью связей между ними и легкостью перестройки системы.

В рассмотренных выше комплексах и системах в той или иной степени используются указанные выше три принципа: почти везде возможна параллельная обработка задач; во многих случаях, и первую очередь в МПВК, возможна реконфигурация и иногда прямая настройка системы на решение определенной задачи; наблюдается стремление унифицировать обрабатывающие средства, т. е. создавать по возможности однородные системы.



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15] [стр.16] [стр.17] [стр.18] [стр.19] [стр.20] [стр.21] [стр.22] [стр.23] [стр.24] [стр.25] [стр.26] [стр.27] [стр.28] [стр.29] [стр.30] [стр.31] [стр.32] [стр.33] [стр.34] [стр.35] [стр.36] [стр.37] [стр.38] [стр.39] [стр.40] [стр.41] [стр.42] [стр.43] [стр.44] [стр.45] [стр.46] [стр.47] [стр.48] [стр.49] [стр.50] [стр.51] [стр.52] [стр.53] [стр.54] [стр.55] [стр.56] [стр.57] [стр.58] [стр.59]