Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[24]

расчетов устойчивости летательных аппаратов, обработки гидролокационных сигналов и изображений, решения задач в частных производных и др.

Мульт ипроцессор ПС-2000

1

ПЭ8

Т

УО 8

ПЭ57

1---1пЭ64[-1

Устройство управления

Управление каналом

Магистраль ввода

Магистраль вывода

£та

ФS

оЕ

§8

§8

УВВ

Внешняя память

Контроллер

1

Модуль управления

Модуль управления

Рис. 3.7. Система ПС-2000

Укрупненная структура системы ПС-2000 изображена на рис. 3.7. Центральная часть системы - мультипроцессор ПС-2000, состоящий из решающего поля и устройства управления мультипроцессором. Решающее поле строится из одного, двух, четырех или восьми устройств обработки (УО), в каждом из которых восемь процессорных элементов. Таким образом, мультипроцессор может содержать 8, 16, 32 или 64 процессорных элемента. Процессорный элемент обрабатывает 24-разрядные слова, используемые для представления 12-, 16- и 24- разрядных чисел с фиксированной запятой, в которых 20 разрядов определяют мантиссу и 4 разряда - шестнадцатеричный порядок. Емкость оперативной памяти процессорного элемента - 4096 или 16 384 24-разрядных слова с циклом обращения соответственно 0,64 или 0,94 мкс. Мультипроцессор из 64 процессорных элементов обеспечивает при обработке данных следующую производительность (в миллионах операций в секунду):

Сложение с фиксированной запятой (регистр-регистр)200

Сложение с плавающей запятой66,4

Умножение28,5 - 50,0

Время выполнения основных операций (в микросекундах):

Транспонирование матрицы 64X640,45

Умножение матриц 64X64:

с фиксированной запятой1,0

с плавающей запятой1,4

Быстрое преобразование Фурье на 1024 комплексные точки:

с фиксированной запятой1,0 - 2,5

с плавающей запятой1,4 - 2,8

Устройство управления содержит блок микропрограммного управления емкостью 16384 микрокоманды, ОЗУ емкостью 4096 или 16384 24-разрядных слов и АЛУ. В блок микропрограммного управления загружаются микропрограммы обработки данных, ввода -вывода и управления. В комплект программного обеспечения системы входит набор микропрограмм базовой системы операций, ориентированной, на обработку матриц, реализацию быстрого преобразования Фурье и решение задач математической статистики, спектрального анализа, линейного и динамического программирования. Возможна


реализация на микропрограммном уровне любой необходимой системы операции. В ОЗУ загружается программа обработки. Команды программы выполняются в обычном порядке. Выполнение сводится к инициированию соответствующей микропрограммы, микрокоманды которой формируют управляющие сигналы, воздействующие на процессорные элементы.

Ввод - вывод данных в память решающего поля, т. е. в ОЗУ процессорных элементов, производится через канал прямого доступа, состоящий из магистралей ввода и вывода. Операции ввода - вывода инициируются мониторной подсистемой и выполняются под управлением устройства управления мультипроцессора. Обработка, ввод и вывод данных могут выполняться одновременно. Обмен данными может осуществляться до 1,8 Мбайт/с при вводе и до 1,4 Мбайт/с при выводе. Процессорные элементы решающего поля связаны регулярным каналом, по которому передаются данные. Конфигурация регулярного канала перестраивается под управлением программы, образуя одно кольцо из 64 процессорных элементов, как на рисунке, или несколько одинаковых колец: 8 колец по 8 процессорных элементов, 4 по 16 или 2 по 32.

В целом система управляется мониторной подсистемой, состоящей из одной или двух мини-ЭВМ СМ-2 и подключенных к ним периферийных устройств. На ЭВМ реализуется подготовка микропрограмм и программ для мультипроцессора и программ для самой мониторной подсистемы с использованием языков программирования и соответствующих трансляторов. Мониторная подсистема управляет загрузкой микропрограмм в мультипроцессор, контролирует работу мультипроцессора и обеспечивает обмен данными между системой и пользователями.

Для хранения больших объемов данных система ПС-2000 снабжена внешней памятью, состоящей из микропрограммируемого контроллера, четырех накопителей на сменных магнитных дисках и восьми накопителей на магнитных лентах. Накопители подключаются к контроллеру через модули управления (локальные контроллеры).

Вычислительный процесс в системе ПС-2000 слагается из трех составляющих: процесса в мониторной подсистеме, выполнения программы, ввода - вывода данных. Процесс в мониторной подсистеме является основным: он инициирует остальные процессы и синхронизирует их. Под управлением мониторной подсистемы в устройство управления загружается набор микропрограмм и программа. В процессе обработки данных набор микропрограмм и программа могут изменяться. Этапы обработки перемежаются с этапами обмена данными между решающим колем мультипроцессора, его внешней памятью и мониторной подсистемой.

Контроль работоспособности системы обеспечивается схемными средствами, контролирующими корректность хранения и передачи данных, и набором программ для проверки функционирования системы. Для поиска неисправностей используется система диагностических программ.

Программное обеспечение ППС-2000 разработано на базе агрегатной системы программного обеспечения (АСПО) СМ ЭВМ, к которому добавлены модули, организующие работу ППС-2000.

Система ПС-2000 имеет ряд преимуществ перед ранее разработанными матричными системами, в частности системой ILLIAC-IV.

1.Процессорные элементы ППС-2000 имеют существенно большие возможности, что определяется наличием сверхоперативной регистровой памяти, отдельного процессора для операций над адресами, процессора активации, функции которого значительно шире, чем функции регистра моды в системе ILLIAC-IV.

2.Благодаря наличию собственной памяти и индексной арифметики, используемой для организации счетчиков адресов, возможно совмещение обмена информацией между модулями памяти ПЭ, АЛУ и устройствами ввода - вывода.

3 Достаточно большая емкость памяти в каждом ПЭ (16 кслов) в сочетании с многоуровневой системой прерываний делает возможной организацию мультипрограммного режима с выделением независимых ресурсов для каждой задачи.


4.Двухуровневое управление (командное и микрокомандное) обеспечивает более эффективное программирование.

5.Возможно наращивание системы модулями по восемь процессорных элементов, причем и конструкция, и набор команд позволяет это делать без изменения средств управления.

6.Стоимость системы сравнительно невысока.

Опыт использования первых систем ПС-2000 показал, что при решении типичных задач геофизики, ядерной физики, аэродинамики и других система обеспечивает высокую системную производительность - до 200 млн. операций сложения с фиксированной запятой в секунду.

3.3. АССОЦИАТИВНЫЕ СИСТЕМЫ I

К числу систем класса ОКМД относятся ассоциативные системы. Эти системы, как и матричные, характеризуются большим числом операционных устройств, способных одновременно, по командам одного управляющего устройства вести обработку нескольких потоков данных. Но эти системы существенно отличаются от матричных способами формирования потоков данных. В матричных системах данные поступают на обработку от общих или раздельных запоминающих устройств с адресной выработкой информации либо непосредственно от устройств - источников данных. В ассоциативных системах информация на обработку поступает от ассоциативных запоминающих устройств (АЗУ), характеризующихся тем, что информация из них выбирается не по определенному адресу, а по ее содержанию.

О :к

of

о •8-

Устройство управления

Запоминающий массив

РгАП

РгМ

Ячейка 0

Схема сравнения

Т0

\ *

Ячейка 1

Т1

\

шшш

\

Ячейка i

Ti

\

шшш

\

Ячейка n-2

Тп-2

\

Ячейка n-1

а о

а о

3 (V)

о

О) (В

Рис 38 Ассоциативное запоминающее устройство

Принцип работы АЗУ поясняет схема, представленная на рис. 3.8. Запоминающий массив, как и в адресных ЗУ, разделен на т-разрядные ячейки, число которых п. Практически для любого типа АЗУ характерно наличие следующих элементов: запоминающего массива; регистра ассоциативных признаков (РгАП); регистра маски (РгМ); регистра индикаторов адреса со схемами сравнения на входе. В АЗУ могут быть и другие элементы, наличие и функции которых определяются способом использования АЗУ.

Выборка информации из АЗУ происходит следующим образом. В РгАП из устройства управления передается код признака искомой информации (иногда его называют компарандом). Код может иметь произвольное число разрядов - от 1 до т. Если код признаков используется полностью, то он без изменения поступает на схему сравнения, если же необходимо использовать только часть кода, тогда ненужные разряды маскируются с помощью РгМ. Перед началом поиска информации в АЗУ все разряды регистра индикаторов адреса устанавливаются в состояние 1. После этого производится опрос первого разряда всех



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15] [стр.16] [стр.17] [стр.18] [стр.19] [стр.20] [стр.21] [стр.22] [стр.23] [стр.24] [стр.25] [стр.26] [стр.27] [стр.28] [стр.29] [стр.30] [стр.31] [стр.32] [стр.33] [стр.34] [стр.35] [стр.36] [стр.37] [стр.38] [стр.39] [стр.40] [стр.41] [стр.42] [стр.43] [стр.44] [стр.45] [стр.46] [стр.47] [стр.48] [стр.49] [стр.50] [стр.51] [стр.52] [стр.53] [стр.54] [стр.55] [стр.56] [стр.57] [стр.58] [стр.59]