Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[1]

функционирования на производительность, надежность, стоимость и другие характеристики систем, а также решаются задачи выбора оптимальных технических характеристик устройств, входящих в состав проектируемых систем.

В данном учебнике основное внимание уделяется архитектуре вычислительных комплексов, систем и сетей, поскольку изучение логики их построения и функционирования - важнейшая составляющая подготовки инженеров - системотехников по ЭВМ. Метрическая теория вычислительных систем излагается применительно к задачам проектирования вычислительных комплексов, систем и сетей и представляется в виде конечных результатов. Желающие детально изучить аппарат метрической теории вычислительных систем могут обратиться к работам [4, 5, 16-19].

Главы 1 и 4 написаны С. А. Майоровым, главы 2 и 3 (кроме § 3.5, 3.6) - А. М. Ларионовым, главы 5-8 и § 3.5, 3.6 - Г. И. Новиковым.

Отзывы о книге, замечания и пожелания просьба направлять по адресу: 191065, Ленинград, Марсово поле, 1, Ленинградское отделение Энергоатомиздата.


ГЛАВА ПЕРВАЯ

системы обработки данных

1.1. СПОСОБЫ ПОСТРОЕНИЯ И КЛАССИФИКАЦИЯ

Система обработки данных (СОД) - совокупность технических средств и программного обеспечения, предназначенная для информационного обслуживания пользователей и технических объектов. В состав технических средств входит оборудование для ввода, хранения, преобразования и вывода данных, в том числе ЭВМ, устройства сопряжения ЭВМ с объектами, аппаратура передачи данных, и линии связь. Программное обеспечение (программные средства) - совокупность программ, реализующих возложенные на систему функции. Функции СОД состоят в выполнении требуемых актов обработки данных: ввода, хранения, преобразования и вывода. Примерами СОД являются вычислительные системы для решения научных, инженерно-технических, планово-экономических и учетно-статистических задач, автоматизированные системы управления предприятиями и отраслями народного хозяйства, системы автоматизированного и автоматического управления технологическим оборудованием и техническими объектами, информационно-измерительные системы и др.

Основа СОД - это технические средства, так как их производительностью и надежностью в наибольшей степени определяется эффективность СОД.

Одномашинные СОД. Исторически первыми и до сих пор широко распространенными являются одномашинные СОД, построенные на базе единственной ЭВМ с традиционной однопроцессорной структурой. К настоящему времени накоплен значительный опыт проектирования к эксплуатации таких СОД, и поэтому создание, их, включая разработку программного обеспечения, не вызывает принципиальных трудностей. Однако производительность и надежность существующего парка ЭВМ оказывается удовлетворительной лишь для ограниченного применения, когда требуется относительно невысокая (до нескольких миллионов операций в секунду) производительность и допускается простой системы в течение нескольких часов из-за отказов оборудования. Повышение производительности и надежности ЭВМ обеспечивается в основном за счет совершенствования элементно-технологической базы. Достигнутое к настоящему времени быстродействие электронных схем приближается к физическому пределу, и производительность ЭВМ на уровне десяти миллионов операций в секунду можно рассматривать как максимальную возможную. При любом уровне технологии нельзя обеспечить абсолютную надежность элементной базы, и поэтому нельзя для одномашинных СОД исключить возможность потери работоспособности. Таким образом, одномашинные

а)

ЭВМ

ЭВМ

б)

ЭВМ

КВВ

Адаптер

КВВ

ЭВМ

НМЛ

НМЛ

НМЛ

НМЛ НМЛ

НМЛ

НМЛ

НМЛ

НМЛ

Рис. 1.1. Многомашинный вычислительный комплекс с косвенной (а) и прямой (б) связью между

ЭВМ


Вычислительные комплексы. Начиная с 60-х годов для повышения надежности и производительности СОД, несколько ЭВМ связывались между собой, образуя многомашинный вычислительный комплекс.

В ранних многомашинных комплексах связь между ЭВМ обеспечивалась через общие внешние запоминающие устройства - накопители на магнитных дисках (НМД) или магнитных лентах (НМЛ) (рис 1,1, а), т.е. за счет доступа к общим наборам данных. Такая связь называется косвенной и оказывается эффективной только в том случае, когда ЭВМ взаимодействуют достаточно редко, например, при отказе одной из ЭВМ или в моменты начала и окончания обработки данных. Более оперативное взаимодействие ЭВМ достигается за счет прямой связи через адаптер, обеспечивающий обмен данными между каналами ввода - вывода ЧКВВ) двух ЭВМ (рис. 1.1, б) и передачу сигналов прерывания. За счет этого создаются хорошие условия для координации процессов обработки данных и повышается оперативность обмена данными, что позволяет вести параллельно процессы обработки и существенно увеличивать производительность СОД. В настоящее время многомашинные вычислительные комплексы широко используются для повышения надежности и производительности СОД.

В многомашинных вычислительных комплексах взаимодействие процессов обработки данных обеспечивается только за счет обмена сигналами прерывания и передачи данных через адаптеры канал - канал или общие внешние запоминающие устройства. Лучшие условия для взаимодействия процессов - когда все процессоры имеют доступ ко всему объему данных, хранимых в оперативных запоминающих устройствах (ОЗУ), и могут взаимодействовать со всеми периферийными устройствами комплекса. Вычислительный комплекс, содержащий несколько процессоров с общей оперативной памятью и периферийными устройствами, называется многопроцессорным. Принцип построения таких комплексов иллюстрируется рис. 1.2. Процессоры, модули оперативной памяти (МП) и каналы ввода-вывода, к которым подключены периферийные устройства (ПУ), объединяются в единый комплекс с помощью средств коммутации, обеспечивающих доступ каждого процессора к любому модулю оперативной памяти и каналу ввода-вывода, а также возможность передачи данных между последними. В многопроцессорном комплексе отказы отдельных устройств влияют на работоспособность СОД в меньшей степени, чем в многомашинном, т.е. многопроцессорные комплексы обладают большей устойчивостью к отказам. Каждый процессор имеет непосредственный доступ ко всем данным, хранимым в общей оперативной памяти, и к периферийным устройствам, что позволяет параллельно обрабатывать не только независимые задачи, на и блоки одной задачи.

Процессор

Процессор

Процессор

Средства коммуникации

МП

МП

МП

КВВ

КВВ

ПУ

ПУ

ПУ

ПУ

Рис. 1.2. Многопроцессорный вычислительный комплекс



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15] [стр.16] [стр.17] [стр.18] [стр.19] [стр.20] [стр.21] [стр.22] [стр.23] [стр.24] [стр.25] [стр.26] [стр.27] [стр.28] [стр.29] [стр.30] [стр.31] [стр.32] [стр.33] [стр.34] [стр.35] [стр.36] [стр.37] [стр.38] [стр.39] [стр.40] [стр.41] [стр.42] [стр.43] [стр.44] [стр.45] [стр.46] [стр.47] [стр.48] [стр.49] [стр.50] [стр.51] [стр.52] [стр.53] [стр.54] [стр.55] [стр.56] [стр.57] [стр.58] [стр.59]