Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[8]

минимальной емкости С8 частота должна увеличиваться до 12 350 ... 12 400 кГц. Если диапазон перестройки недостаточен или слишком велик, придется несколько изменить число витков L3. В первом случае увеличить индуктивность, а во втором - уменьшить и вновь подобрать 7С1. Правильная установка диапазона частот ГПД на диапазоне 10 м даст нужную растяжку и остальных диапазонов приемника: диапазоны 15 и 20 м займут практически всю шкалу, 40 и 80 - по 50% и 160 м - 75 % полной шкалы. Оставшиеся свободными участки трех диапазонов могут пригодиться для нанесения шкал частот трех новых диапазонов, выделенных радиолюбителям международным союзом электросвязи. Частоты начала остальных диапазонов устанавливаются подбором и регулировкой емкостей 7С3...7С12: 15 м - 8000 кГц, 20 м - 9000 кГц, 40 м - 6000 кГц, 80 м - 8500 кГц, 160 м - 6850 кГц.

Далее надо проверить работу «расстройки». Напряжение на выводе 6 узла 6 при выключенной «расстройке» должно быть 12В, а при включенной - изменяться во время регулировки от 11 до 13 В, вызывая изменение частоты, генерируемой первым каскадом ГПД±2,5; 5; 1,5; 6; 4,5 и 15 кГц на диапазонах 160, 80, 40, 20, 15 и 10 м соответственно. Изменения частоты при вращении ручки «Расстройка» влево и вправо от центрального положения должны быть приблизительно равны по абсолютному значению.

Подключив ВЧ вольтметр к выводу 11 узла 6, настроить полосовые фильтры частоты ГПД. Напряжение на выходе ГПД должно быть 2...3 В и изменяться не более чем на 10% при перестройке внутри каждого диапазона. Для этого может потребоваться подбор величины резисторов, шунтирующих контуры полосовых фильтров.

При изготовлении катушек фильтров в соответствии с приведенными данными и установке указанных на рис. 1.6 величин емкостей фильтрами будут выделены нужные частоты (удвоенные или неудвоенные, в зависимости от диапазона).

Для окончательной регулировки ГПД к выводу 11 платы 6 необходимо подключить цифровой частотомер, обеспечивающий точность измерения частоты не хуже 10 Гц, или частотомер, стабильность которого обеспечит измерение уходов частоты ГПД с точностью, оговоренной выше. Проверку и регулировку стабильности частоты ГПД следует начать с диапазона 10 м (емкость контура ГПД этого диапазона остается включенной и на остальных диапазонах). Подождав 5...10 мин после включения приемника, надо начать равномерно прогревать детали ГПД, повышая их температуру от комнатной до 60...60°С за время 10...30 мин. Эту операцию удобно проводить, нагревая удаленный от ГПД участок шасси с помощью медицинского рефлектора. После прогрева частота на выходе ГПД может измениться на единицы или даже десятки килогерц, что вызвано отсутствием термокомпенсации деталей контура генератора. Если частота после прогрева увеличилась, температурный коэффициент конденсаторов узла 7 отрицательный и слишком велик по абсолютной величине, а если уменьшилась - этот коэффициент или положителен или отрицателен, но мал по абсолютному значению.

Дав узлу полностью остыть, заменяют конденсаторы, составляющие 7СД изменив их температурный коэффициент в нужную сторону и сохранив суммарную емкость (не забыть проверить установку начала шкалы!).

Повторяя эти операции, необходимо добиться ухода частоты ГПД после повышения температуры его деталей на 30...40°С не более чем на 1 кГц. В этом случае уход частоты приемника в процессе нормальной работы не будет превышать 100 Гц за 10 ... 15 мин, что можно считать удовлетворительным.

Если удалось добиться стабильности частоты ГПД на 10-метровом диапазоне, то термокомпенсация на остальных диапазонах, безусловно, достижима, но всю работу по подбору температурных коэффициентов конденсаторов узла 7 придется повторить на каждом из них.

Наиболее вероятные причины, не позволяющие добиться требуемой стабильности частоты ГПД: плохое качество катушки L3, нестабильность конденсаторов узла 7, или 6С8, 6С7 и 6С6 узла 6.

Катушку L3 желательно намотать на каркасе из радиокерамики. Возможная замена - термореактивная пластмасса, имеющая малые диэлектрические потери и температурный коэффициент линейного расширения ТКЛР. Например, АГ4С, ТКЛР которой (2 - 3)-Ю-6 (для сравнения - ТКЛР фторопласта - 4 (200 - 250)-10~6). Каркас катушки L3 должен иметь канавки для фиксации положения провода, а если их нет - необходимо перед намоткой смазать каркас клеем БФ-2 или БФ-6 с последующей сушкой при температуре 80...100°С. Провод во время намотки должен быть натянут.

Отдельные экземпляры конденсаторов имеют неприятное свойство самопроизвольно изменять свою емкость, что может быть выявлено только при контроле частоты ГПД после замены такого конденсатора (одно из наиболее тяжелых испытаний при регулировке ГПД!). Хороших результатов легче достигнуть, используя в контуре ГПД конденсаторы типа СГМ, КГК, но можно обойтись и типами КСО, КЛС, КТК, КМ.

Проверка и настройка высокочастотного тракта

Перед настройкой ВЧ тракта необходимо убедиться в правильности режимов транзисторов первого смесителя и УВЧ. Они должны быть такими же, как и у транзистора второго смесителя и УПЧ 500 кГц.

Сигнал ГСС подается на антенный вход приемника. При настройке тракта каждого диапазона сначала устанавливают максимальную величину сигнала (до 100 мВ), иначе из-за расстройки контуров его можно и не обнаружить. Добившись приема сигнала ГСС при установке его частоты на середину диапазона, последовательно настраивают П-контур, ужополосный фильтр и полосовой фильтр частоты сигнала.


Регулировкой П-контура добиваются максимума показаний S-метра. Для диапазона 10 м S1 необходимо установить в правое по схеме положение (это положение будем называть 1-м, а показанное на схеме - 9-м).

При работе на диапазоне 15 м S1 устанавливают в 3-е положение, на 20 м - в 5-е, на 40 м - в 7-е, 80 м - 8-е, 160 м - 9-е положения (неиспользованные положения S1 могут пригодиться при работе на ненастроенную антенну и для наращивания числа диапазонов приемника).

Снизив сигнал ГСС до величины, при которой S-метр устанавливается в среднее положение, следует настроить узкополосный фильтр с помощью С6 и убедиться, что максимальные показания S-метра не соответствуют крайнему положению этого конденсате-ра. В противном случае придется уточнить число витков катушки узкополосного фильтра.

Настройку полосового фильтра необходимо произвести при перестройке ГСС внутри диапазона, не забывая каждый раз подстраивать узкополосный фильтр по максимуму показаний S-мет-ра. В случае тщательной регулировки полосового фильтра, которая достигается небольшой расстройкой его контуров вверх и вниз от границ диапазона, показания S-метра при постоянстве напряжения ГСС и его перестройке внутри каждого диапазона изменяются не более чем на 10 ... 20 мкА (вся шкала S-метра 1 мА).

При правильной регулировке приемника минимальное напряжение ГСС на его входе, которое может быть четко выделено на фоне шумов на выходе приемника, составляет: на диапазоне Юм - 0,3 мкВ, 15м - 0,4 мкВ, 20 м - 0,6 мкВ, 40 м - 1,5 мкВ, 80 м - 3 мкВ, 160 м - 5 мкВ.

Свидетельством реализации полной чувствительности приемника служит и заметное возрастание шумов на его выходе при настройке узкополосного фильтра на диапазоне 10 м. На 15-метровом диапазоне уровень шумов должен возрастать меньше, на 20-метровом диапазоне шумы узкополосного фильтра (за счет его частичного включения к входу УВЧ) почти незаметны, а на остальных диапазонах совсем не обнаруживаются.

Градуировка £-метра и проверка основных характеристик приемника

Как указывалось выше, градуировка S-метра приемника выполняется на диапазоне 20 м. Сигнал ГСС с частотой около 14 150 кГц и напряжением 50 мкВ подается на вход приемника, а затем производятся тщательная установка частоты приемника и регулировки П-контура и узкополосного контура по максимуму показаний S-метра.

Подбором величины резистора 13R14 добиваются показаний S-метра, близких к середине его шкалы (это будет точка S9). Остальные деления S-метра наносят в соответствии с двумя первыми столбцами табл. 10.

Таблица 10

Деление шкалы

Напряжение на входе приемника

Пример показаний S-метра, мкА

4

1,5 мкВ

20

5

3 мкВ

150

6

6 мкВ

260

7

12 мкВ

360

8

25 мкВ

440

9

50 мкВ

500

9+10 дБ

150 мкВ

600

9 + 20 дБ

500 мкВ

700

9 + 30 дБ

1,5 мВ

800

9+ 40 дБ

5 мВ

900

9 + 50 дБ

15 мВ

980

Полученная в реальном приемнике шкала S-метра будет несколько не соответствовать показаниям, приведенным в последнем столбце табл. 10, из-за разброса характеристик транзисторов УВЧ, УПЧ и УПТ АРУ.

Для оценки динамического диапазона приемника к его входу через тройник одновременно подключают ГСС и антенну. Проверку производят на диапазоне 20 м, где чувствительность приемника близка к 1 мкВ. Отыскав сигнал, слышный «на пределе возможностей» приемника (полезно для отыскания такого контрольного ситнала использовать вместо антенны провод длиной около 1 м), настраивают ГСС на эту же частоту, после чего расстраивают его на 10 - 15 кГц, т. е. выводят сигнал ГСС из полосы пропускания ЭМФ, но оставляют его в полосе пропускания ВЧ тракта и ФСС 5 мГц. Увеличивая выходное напряжение ГСС скачкообразно на 20 дБ (в 10 раз по напряжению), убеждаются, что при подаче на вход приемника сигнала ГСС напряжением 10 мВ слышимость контрольного сигнала совершенно не изменяется, а при подаче 100 мВ заметно ухудшается. Таким образом, внеполосный сигнал, превышающий чувствительность приемника на 80 дБ, лежит в пределах его динамического диапазона, а превышающий чувствительность на 100 дБ - явно за границей динамического диапазона. Такой результат позволяет грубо оценить величину динамического диапазона приемника в 90 дБ.


Если динамический диапазон приемника оказался меньше 80 дБ, необходимо подобрать режимы транзисторов УВЧ и смесителей, начав с увеличения протекающих через эти транзисторы постоянных токов, или просто заменить эти транзисторы на более удачные экземпляры. Попытки аналогичным путем добиться динамического диапазона более 90 дБ обречены на провал, так как эта величина определяется характеристиками лучших образцов примененных транзисторов и схемой построения приемника.

В заключение проверяют избирательность приемника по зеркальным каналам. Проверку выполняют на диапазоне 10 м, где эта избирательность минимальна.

На вход приемника подают сигнал ГСС с частотой 28 500 кГц и напряжением 10 мкВ. Тщательно настраивают приемник на этот сигнал - показания S-метра будут около S8. Изменяют частоту ГСС на близкую к 18500 кГц (зеркальная частота первого преобразователя частоты) и увеличивают напряжение от ГСС до возобновления приема его сигнала (показания S-метра должны быть опять S8). Следует убедиться, что для этого на вход приемника надо подать не менее 1 В, т. е. подавление зеркального канала первого преобразователя частоты будет около 100 дБ.

Затем подают на вход приемника сигнал с частотой 27 000 кГц. Для получения S8 по этому сигналу на вход приемника придется подать 0,3 В, т. е. ослабление зеркального канала второго преобразователя частоты будет около 90 дБ. Не расстраивайтесь, что этот показатель хуже, чем избирательность по зеркальному каналу первого преобразователя: даже для профессиональных приемников первого класса норма подавления зеркального канала 80 дБ!

На более низкочастотных диапазонах избирательность приемника по зеркальным каналам лучше, например, проверка ослабления зеркального канала второго преобразователя частоты на диапазоне 15 м дает результат около 100 дБ.

Убедившисть, что все характеристики приемника соответствуют задуманным, можно приступить к приему сигналов любительских радиостанций. 7.3 и 100 %

2. На базе приемника - приемопередатчик

Построив приемник коротковолновика-наблюдателя, вы сможете вступить в мир коротких воли, заполненный в любое время суток сигналами тысяч индивидуальных и коллективных передающих любительских радиостанций. Интересно слушать их переговоры, рассылать, а иногда и получать в ответ, карточки-квитанции, подтверждающие прием этих радиостанций. Но еще более интересно иметь приемопередающую радиостанцию. Только тогда вы станете не пассивным, а активным участником коротковолнового радиоспорта.

Для работы в эфире радиолюбителям-коротковолновикам отведены диапазоны частот, занимающие сотни килогерц. Как же отыскать среди них радиостанцию, отвечающую на ваш вызов? Для решения этой задачи радиолюбители-коротковолновики применяют простейшее из возможных решений - отвечающая радиостанция работает на той же частоте, что и радиостанция, которой она отвечает. Это правило соблюдается всеми радиолюбителями-коротковолновиками, за исключением очень редких случаев работы с разносом частот приема и передачи. Такой способ связи иногда используется радиолюбительскими экспедициями, но и тогда разнос частот приема и передачи обычно составляет единицы килогерц.

Если на любительской коротковолновой радиостанции используются отдельные приемник и передатчик, при вступлении в радиосвязь возникает необходимость точно настроить передатчик на частоту корреспондента. Эта операция вносит определенную нервозность в процесс вхождения в радиосвязь, а в соревнованиях коротковолновиков приводит к потерям времени, существенно снижающим спортивные результаты. Поэтому среди радиолюбителей-коротковолновиков (а в последнее время и в профессиональной радиосвязи) нашли широкое применение устройства, обеспечивающие автоматическую настройку передатчика на частоту приемника - так называемые «трансиверы». В трактах этих устройств используются общие элементы схем приемника и передатчика.

Наш приемник задуман как часть коротковолнового трансивера. Устанавливая дополнительные узлы, его легко можно превратить в трансивер, соответствующий требованиям к коротковолновой любительской радиостанции любой из четырех существующих в нашей стране категорий.

Еще раз напоминаем - не только для работы на передатчике, но и для его (а значит, и трансивера) постройки необходимо получить разрешение Министерства связи!

На рис. 2.1 приведена принципиалная схема трансивера радиостанции первой категории с цифровой шкалой.



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15] [стр.16] [стр.17] [стр.18] [стр.19] [стр.20] [стр.21] [стр.22] [стр.23]