Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[3]

диапазоне где действие дестабилизирующих частоту ГПД факторов максимально, один из них - нестабильность контакта в S2-1 исключен (но зато установка частоты с помощью 7С2 на диапазоне 10 м влияет и на частоты остальных диапазонов). Использование на каждом диапазоне постоянной емкости контура ГПД состоящей из двух конденсаторов, позволяет подобрать температурный коэффициент этой емкости, компенсирующий положительный температурный коэффициент L3 (ее каркас при нагревании увеличивает геометрические размеры L3).

Для обеспечения стабильности частоты ГПД все емкости его контура заземлены в одной точке (вывод 1 узла 7) через токосъем ротора конденсатора перестройки ГПД С8.

ФСС на частоту 5 МГц

Связь между контурами ФСС (рис. 1.9) - индуктивная (экранов на катушках нет). Конструктивно же ФСС выполнен таким образом что при наличии критической связи между 8L1 и 8L2, между 8L2 и 8L3 связь между 8L1 и 8L3 практически отсутствует. Все катушки собраны в сердечниках СБ-12А и содержат по 16 витков провода ПЭШО 0,44, Величины емкостей контуров ФСС выбраны так, что коэффициент передачи от входа первого смесителя к входу второго близок к единице. В этом случае для предотвращения перегрузки 2-го смесителя ФСС не должен обеспечивать высокую избирательность по 2-й ПЧ (что было бы необходимо при наличии усиления на 1-й ПЧ), но его избирательность должна предотвращать появление помех, действующих по зеркальному каналу 2-го преобразования частоты. С этой задачей рассматриваемый ФСС вполне справляется. Попытки заменить его фильтром, собранным на высокодобротных контурах на ферри-товых кольцах, кварцевым фильтром и подобными сложными устройствами, лишены смысла.

1 (So i L

Aj

Рис. 1.9. Принципиальная электрическая схема ФСС 5 МГц

Генератор частот 500 и 4500 кГц

Рис. 1.10. Принципиальная электрическая схема генератора частот 500 и 4500 кГц

Частота генератора (рис. 1.10), собранного на транзисторе 10VI КТ602Б (может быть заменен транзисторами типа КТ608 с любой буквой), определяется частотой кварцевого резонатора В1 (см. рис. 1.1) и в пределах нескольких десятков герц - емкостью конденсатора 10С1. Контур 10V1 - 10С4 должен быть настроен на частоту немного более низкую, чем 500 кГц, в противном случае генерация не возникнет. С катушки связи 10V2 напряжение с частотой 500 кГц поступает на 1-й утроитель частоты, собранный на транзисторе 10V2 КПЗОЗБ


(возможны замены этого транзистора на КПЗОЗ или КП307 с любыми буквами без существенного влияния на работу приемника), и одновременно на детектор (в узел 12) и цифровую шкалу (если она будет сделана). Благодаря использованию в генераторе мощного транзистора и большому отношению числа витков 10L1 и 10L2 (5:1, т. е. коэффициент трансформации сопротивления от 10L2 в контур 10L1 - 10С4 не менее 25!) все потребители напряжения частотой 500 кГц практически не влияют на работу генератора этой частоты.

Нагрузкой 1-го утроителя частоты служат два связанных емкостью 10С9 контура 10L3 - 10C7 и WL4 - 10CW, настроенных на частоту 1500 кГц. Использование в утроителе частоты полевого транзистора и выбор режима его работы обеспечивают ослабление четных составляющих тока стока, в том числе второй гармоники. Применение двух контуров, настроенных на третью гармонику в сочетании с указанным свойством транзистора утроителя, позволило получить на выходе «чистый» сигнал частоты 1500 кГц. Другие гармоники частоты 500 кГц не оказывают влияния на. работу следующего утроителя, собранного по такой же, как и 1-й утроитель схеме на транзисторе 10V3. Контуры на выходе 2-го утроителя WL5 - WC12, WL6 - 10C15, 10С16 настроены на частоту 4500 кГц, напряжение которой, снимаемое с емкостного делителя 10С15, 10С16, практически не содержит составляющих с частотами, не равными 4500 кГц.

Все катушки размещены в сердечниках СБ-12А: 10L1 и 10L2 в одном сердечнике и содержат соответственно 50 и 10 витков провода ПЭВ-2 0,2; 10L3 и 1014 - ъо 40 витков провода ПЭШО 0,31; 10L5 и 10L6 - по 16 витков провода ПЭШО 0,44.

Принципиальная электрическая схема эмиттерного повторителя (рис. 1.11) полностью повторяет схему повторителя, входящего в узел ГПД.

Эмиттерный повторитель

2

И Vi кпозб

Рис. 1.11. Принципиальная электрическая схема эмиттерного повторителя

Ш0 4,7*

Рис. 1.12. Принципиальная электрическая схема УПЧ 500 кГц и детектора

УПЧ 500 кГц и детектор

Усилитель ПЧ 500 кГц (рис. 1.12) выполнен, как и УВЧ, на двухзатворном полевом транзисторе 12V1 КП350Б (о его возможных заменах см. описание УВЧ). Сигнал поступает на первый затвор, усиление


регулируется по второму затвору, напряжение питания ограничено стабилитроном 12V2, резистор 12R5 предотвращает возможность самовозбуждения УПЧ на УКВ. Контур 12L1 - 12С5 настроен на 500 кГц,

Как видно из схемы, в приемнике только один каскад усиления на частоте 500 кГц. Это сделано исходя из следующих соображений:

при работе телеграфом полоса пропускания сужается до 1 кГц после детектора, поэтому при излишнем усилении по ПЧ 500 кГц сигналы, пришедшие в ЭМФ, но не лежащие в полосе пропускания фильтра, включенного после детектора, могут перегрузить последний;

необходимое усиление сигналов в приемнике распределено равномерно между УПЧ 500 кГц и УНЧ, так что усиление в каждом из этих трактов невелико и трудности, связанные с обеспечением устойчивой работы этих усилителей, исключаются.

Детектор собран на полевом транзисторе 12V3 КПЗОЗБ (который можно заменить на КПЗОЗ или КП307 с любой буквой) по схеме, принципиально не отличающейся от схем 1-го и 2-го смесителей. Это естественно, так

как детектор на 12V3--это преобразователь частот, лежащих в полосе 500...503 кГц, в частоты О ... 3 кГц

(гетеродинный сигнал с частотой 500 кГц подается на исток 12V3). Напряжение НЧ выделяется на нагрузке детектора 12R9. Оно отфильтровывается от напряжения с частотой 500 кГц элементами 12С9, 12R11, 12С12 (эта цепь значительно ослабляет частоты, превышающие 5 кГц).

Гетеродинное напряжение пришлось подать на исток 12V3 через два параллельно включенных конденсатора 12С10 (керамический) и 12С11 (электролитический). Первый пропускает напряжение с частотой 500 кГц, а второй предотвращает выделение на 12R10 напряжения НЧ (вывод 7, соединенный с корпусом через 10L2 для низких частот просто соединен с корпусом).

Катушка 12L1 размещается в сердечнике СБ-12А и содержит 120 витков провода ПЭВ-2 0,16.

Принципиальная электрическая схема узла УНЧ и АРУ приведена на рис. 1.13. Первый каскад УНЧ собран на полевом транзисторе 13V1 КПЗОЗБ (возможные замены такие же, как и у транзистора детектора). Большое входное сопротивление этого каскада необходимо для обеспечения работы узкополосного фильтра.

Рис. 1.13. Принципиальная электрическая схема УНЧ и АРУ

Последний выполнен по схеме двойного Т-моста (13R2, 13С1, 13R3 и 13С2 13R4, 13СЗ). С нагрузки в цепи стока 13V1 усиленное напряжение НЧ подается на Т-мост через эмиттерный повторитель согласующий сравнительно высокое выходное сопротивление каскада на 13V1 с сопротивлением Т-моста. В повторителе использован транзистор 13V2 КТ312Б (можно применить КТ312 или КТ315 с любой буквой). При работе телеграфом выводы 3 и 4 узла соединены, и двойной мост образует цепь отрицательной обратной связи в первом усилителе НЧ. На частоте 1000 Гц напряжения обратной связи, поступающие через половинки Т-моста, в точке соединения 13R2 и 13С2 равны по амплитуде и противо-фазны так что отрицательная обратная связь отсутствует и усиление между входом УНЧ и выводом 4 максимально и равно этому усилению при работе

Усилитель низкой частоты и автоматическая регулировка усиления



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15] [стр.16] [стр.17] [стр.18] [стр.19] [стр.20] [стр.21] [стр.22] [стр.23]