Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[16]

вырабатывается двоичный код числа подсчитанных импульсов. На этих выводах появляются положительные напряжения (3...4,5В), когда соответствующий разряд числа подсчитанных импульсов не равен нулю.

Работа микросхемы 26D5 иллюстрируется пятью верхними диаграммами напряжения (рис. 2.25). Так как интервал между импульсами на выводе 14 микросхемы 26D5 равен 2 мс, то интервал между импульсами на выводе 11 этой микросхемы будет 20 мс.

ii 11 п ii I г г птпгпттг i

ВыЬ.%2ЬВ5 J

Ш9 26В5

J-I I-L

J-I I L

s

ВыбМ 25B5 ВШ2 26B8.

В

ВШ 26D8

i

J-L

BtfSJQ 26B6 8

5Ш6Ш7 ВШ3 26В7

3

ms 26ВБ Ю

BmS-il 26B6

ВШ 26UL dt*89 2SD6 fi

ВШ 2Ш

Рис. 2.25. Диаграммы напряжений, поясняющие работу цифровой шкалы

Импульсы подаются на счетный вход триггера 26D8 (1155ТК1, вывод 12), который имеет два выхода - прямой (вывод 8) и инверсный (вывод 6). На этих выводах формируются противофазные импульсы длительностью 20 мс, показанные на диаграммах 6 и 7.

Сигналы с вывода 8 микросхемы 26D8 и с выводов 9 и 8 26D5 подаются на три входа микросхемы 26D7A, представляющей собой логический элемент «ЗИ - НЕ». Напряжение на выходе этого элемента (вывод 12} уменьшится до величины близкой к нулю только при одновременном воздействии положительных напряжений на все три входа микросхемы. Сигнал с вывода 12 инвертируется с помощью микросхемы 26D6B и на ее выходе (вывод 6} формируется положительный импульс, показанный на диаграмме 9. Этот импульс в дальнейшем будем называть импульсом «обнуления».

На три входа микросхемы 26D7C подаются сигналы, отличающиеся от действующих на входах 26D7A тем, что один из них предварительно инвертируется микросхемой 26D7B (сигнал на выходе 26D7B показан на


диаграмме 8). Положительный импульс, формируемый на выходе инвертора 26D6D, включенного после 26D7C, показан на диаграмме 10. Этот импульс мы в дальнейшем будем называть импульсом «записи».

Сигнал ГПД подается между выводами 3 и 4 цифровой шкалы, причем вывод 4 соединен с оплеткой коаксиального кабеля, связывающего ГПД со шкалой так, что ток с частотой ГПД течет только по кабелю, не ответвляясь на корпус трансивера. Сигнал ГПД усиливается и ограничивается схемой на транзисторах 26V1, 26V2, 26V4 и диоде 26V3. Назначение этой схемы сформировать импульсы с частотой повторения, равной частоте ГПД, и одновременно ,не допустить попадания сигналов, действующих в схеме цифровой шкалы, в ГПД. Большое усиление рассматриваемой схемы позволило применить слабую связь между выходом ГПД и коаксиальным кабелем (емкость 6С1 не больше 3 пФ). Транзистор 26V2 должен иметь малые межэлектродные емкости (можно использовать КТ325 с любой буквой), в качестве 26V1 и 26V4 можно применить КТ306 или КТ325 с любыми буквами. 26V3 - любой высокочастотный кремниевый диод. Напряжение на выходе формирователя импульсов с частотой ГПД условно (на самом деле эти импульсы идут гораздо чаще) показано на диаграмме 11. Импульсы с частотой ГПД (до 24,7 МГц, при работе на 10-метровом диапазоне) поступают на «счетный» вход (вывод 12) быстродействующего триггера 26D1 (К131ТК1). Вместо этого триггера можно попробовать применить менее быстродействующий К155ТК1, но, в соответствии со своими техническими условиями, он может и не работать на столь высоких частотах. На выходе (вывод 8) 26D1 частота следования импульсов ГПД снижается в два раза (см. диаграмму 12).

Импульсы с выхода 26D1 поступают на один из входов (вывод 9) логического элемента «2И - НЕ» 26D6C. На другой вход этого элемента (вывод 10} поступает сигнал с вывода 6 микросхемы 26D8 (см. диаграмму 7 рис. 2.25). Напряжение на выходе

26D6C (вывод 8) может изменяться под воздействием напряжения на ее выводе 9 только в течение времени, когда напряжение на выводе 10 не равно нулю. В результате на выходе 26D6C формируется пакет импульсов с частотой ГПД, деленной на 2, причем длительность этого пакета равна 20 мс (0,02 с). Сколько же импульсов N bhx.26d6c в этом пакете?

Интервал между импульсами на выходе 26D1 равен:

I2

t вых.26D1ГПД

Л/ пакета пакета/гПД0,02 г nni* т~.,

-эыа. 26DI--z

ИЛИ

Лвых. 26d6c - щ?п&,КГЦ,

Импульсы с выхода 26D6 поступают на вход цепочки из четырех десятичных счетчиков 26D12, 26D11, 26D10 и 26D9 (К155ИЕ2). На выходе 26D12 (вывод 11) число импульсов в пакете снижается в 10 раз:

NebaD-frrmj кГц

У микросхем 26D9...26D12 на выводы 2 и 3 подан импульс «обнуление», так что к началу появления пакета импульсов на входе 26D12 вся эта цепочка счетчиков установлена в состояние, при котором на всех выходах (выводы 12, 9, 8, 11) напряжения равны нулю. С пр:иходом пакета импульсов напряжения на выходах 26D11 начнут меняться в соответствии с числом единиц импульсов на входе этой микросхемы (т. е. на ее выходах формируется двоичное число единиц килогерц). При подсчете каждой десятки импульсов на выводе 1.1 26D11 положительный импульс появляется один раз (см. диаграмму 5 рис. 2.25), так что 26D10 ведет подсчет числа десятков килогерц, и соответственно 26D9. подсчитывает число сотен килогерц. К концу пакета импульсов на входе 26D12 двоичное число на выходах 26D11 будет точно равно числу единиц килогерц частоты ГПД, на выходах 26D10 - десятков килогерц, а на выходах 26D9 - сотен килогерц частоты ГПД.

Выходы 26D9, 26D10 и 26D11 соединены через усилители - инверторы, собранные на транзисторах 26V7...26V18 (КТ315В могут быть заменены любыми маломощными среднечастотными кремниевыми транзисторами структуры n-p-n с допустимым напряжением коллектор-эмиттер не менее 24В) с входами микросхем 26D13, 26D14, 26D15 (К161Пр2). Схема К161Пр2 состоит из четырех D-триггеров, выходы которых соединены со входами дешифратора, превращающего двоичное число в 7 напряжений, обеспечивающих отображение 7-сегментным индикатором десятичных зна-чений этих двоичных чисел.

Напряжение на входе D-триггера не воздействует на его выход, пока отсутствует импульс синхронизации. В течение всего времени действия этого импульса напряжение на выходе D-триггера повторяет напряжение на его входе. Напряжение, существовавшее на входе D-трпггера в момент окончания импульса синхронизации, останется неизменным до прихода следующего импульса. Таким образом, D-триггер запоминает значение (0 или 1) сигнала на его входе.

В микросхемах К161Пр2 через вывод 7 синхронизирующий импульс подается на все четыре D-триггера. На эти выводы микросхем 26D13, 26D14 и 26D15 через усилитель-инвертор, собранный на транзисторе 26V19


(возможные замены такие же, как и для 26V7 ... 26V18) подан импульс «записи». Этот импульс появляется раньше импульса «обнуления», так что D-триггеры микросхем К161Пр2 запоминают результаты подсчета числа килогерц частоты ГПД на время между импульсами «обнуления», т. е. на 40 мс. В результате на выходах 26D13, 26D14 и 26.D15 формируются напряжения питания 7-сегментных индикаторов, обеспечивающие высвечивание трех десятичных знаков числа килогерц частоты ГПД. При непрерывном изменении частоты ГПД показания индикаторов будут изменяться через 40 мс. Поскольку такой интервал меньше «постоянной времени» органа зрения, задержка в изменении показаний цифровой шкалы при вращении ручки настройки трансивера незаметна.

Устойчивости показаний цифровой шкалы способствует наличие в цепочке подсчета числа импульсов от ГПД одного «неиндицируемого» счетчика 26D12. Дело в том, что частота ГПД не синхронизирована с частотой генератора 500 кГц, определяющего положение импульса на выводе 6 26D8. Поэтому при постоянстве частоты ГПД результаты подсчета числа импульсов в пакете могут отличаться на единицу, так что младший разряд двоичного числа на выходах 26D12 будет неустойчив. Случайная смена младшего разряда на выходе 26D11 возможна только при изменении старшего разряда числа на выходе 26D12. Таким образом, неустойчивость младшего разряда двоичного числа на выходе 26D12 не влияет на устойчивость показаний цифровой шкалы.

В качестве индикаторов цифровой шкалы применены люминис-центные 9-сегментные индикаторы ИВ-3 (сегменты i и j этих индикаторов не используются). У этих индикаторов высокая яркость свечения и малое потребление тока: несколько миллиампер по цепям сетки и сегментов и несколько десятков миллиампер по цепи накала. Индикаторы подключаются непосредственно к -выходам микросхем К161 Пр2.

Возможны и другие варианты выполнения индикаторного табло цифровой шкалы. При использовании газоразрядных индикаторов ИН14 или ИН16 после счетчиков 269 ...26911 необходимо включить микросхемы с четверками D-триггерав (К155ТМ5 или

поразрядных индикаторов придется использовать напряжение 180В, которое можно получить от имеющегося в трансивере источника напряжения +300 В.

Если вместо К155ИД1 применить К514ИД2, то в качестве индикаторов можно использовать вакуумные индикаторы накаливания ИВ9 или ИВ 16. Более красиво выглядят работающие от дешифраторов К514ИД2 7-сегментные светодиодные индикаторы типа АЛС324Б, но между каждым выходом дешифратора и сегментом индикатора в этом случае надо включить резистор сопротивлением 51 ... 100 Ом.

Для питания цифровой шкалы, собранной по рис. 2.24, необходимы напряжения +24 В и +5 В. Эти напряжения подаются на узел 26 через развязывающие фильтры 26R1, 26С9 и 26L1, 26С4, 26 С5.

Источник +24 В был в трансивере и до появления цифровой шкалы. Источник напряжения +5 В выполняется с использованием напряжений питания накала ламп V3 и V6 (см. рис. 1.15 и 2.1). Нагрузкой выпрямителя служит конденсатор С27, после которого включен стабилизатор напряжения, собранный на резисторе R24 и стабилитроне V7. Для уменьшения пульсаций напряжения +5 В параллельно V7 включен конденсатор С28.

Инги накала индикаторов цифровой шкалы питаются от источника накала ламп УЗ и V6 через гасящий резистор 26R41.

Как и любое другое устройство цифровой техники шкала не требует настройки. Если она собрана без ошибок и из исправных элементов, ее правильная работа гарантирована. Перед включением шкалы целесообразно проверить источник напряжения + 5 В. И без нагрузки, и при нагрузке резистором с сопротивлением 10 Ом напряжение на конденсаторе С28 должно быть в пределах 4,5 ... 5,5 В.

Единственная регулировка при введении в состав трансивера цифровой шкалы - подбор величины конденсатора 6С1. Первоначальная емкость этого конденсатора 1 пФ. Если шкала работает неустойчиво, емкость 6С1 увеличивают до достижения четкой работы шкалы на всех диапазонах. Следует учитывать, что чем больше величина 6С1, тем сильнее сказываются на работе приемника помехи от шкалы. При правильном подборе конденсатора 6С1 и использовании транзисторов 26V1, 26V2 и 26V4 с малыми межэлектродными емкостями и большим усилением тока помехи от шкалы прослушиваются только в отдельных точках 10-метрового диапазона с силой 1 - 2 балла и практически не затрудняют работу в эфире. Для снижения помех от шкалы может потребоваться установка дополнительного экрана между шкалой и узкополосным фильтром частоты сигнала.

Конструктивно цифровая шкала представляет собой плату (рис. 2.26). Часть, монтажа узла 26 выполнена печатными проводниками, расположенными снизу (со стороны выводов микросхем). Остальные соединения делаются изолированным проводом путем его прокладки по кратчайшим расстояниям между соединяемыми точками схемы, в результате чего под платой образуется так называемая путанка. Выглядит она не очень красиво, но пытаться заменить ее двусторонним печатным монтажом не стоит. Во-первых, изготовление сложной печатной платы целесообразно только при массовом изготовлении узлов, а, во-вторых, не очень продуманный печатный монтаж может привести к появлению на выводах узла 26 таких помех, что включение цифровой шкалы вызовет существенное снижение чувствительности приемника.

Плата шкалы устанавливается на стойках, крепящих ее к экрану, изготовленному в виде уголка из дюраля толщиной 1,5 мм, Горизонтальная часть этого уголка располагается между платой шкалы и шасси трансивера. а вертикальная - крепится к передней панели (см. рис. 1.16).

Общий вид трансивера с цифровой шкалой показан на рис. 2.27.



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15] [стр.16] [стр.17] [стр.18] [стр.19] [стр.20] [стр.21] [стр.22] [стр.23]