Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[3]

автоматизации только логического синтеза, при этом с ее помощью могут быть построены только несложные дискретные устройства, условия работы которых хорошо описываются таблицами переходов.

Позднее эта система была преобразована на основе развитого языка программирования логических задач ЛЯПАС в автоматизированную систему [7]. Практический интерес в настоящее время представляет вторая разновидность систем автоматизации проектирования.

В автоматизированной системе проектирования (АСП) разумно сочетаются опыт и интуиция проектировщика при решении сложных многоэкстремальных задач с быстродействием ЭВМ, выполняющей громоздкие вычисления, благодаря чему проектировщик может рассмотреть большое число возможных вариантов. Таким образом, в автоматизированной системе проектирования процесс проектирования основан на диалоге между человеком и машиной.

При разработке принципа построения и функционирования АСП необходимо в первую очередь выбрать принцип взаимодействия заказчика с ЭВМ,в которой реализована АСП, и язык общения. В системе взаимодействия заказчика с АСП удобно выделить три элемента (рис. 1.9); заказчика, приемщика и проектировщика.

Заказчик формулирует задачу проектирования и по промежуточным результатам, получаемым проектировщиком на отдельных этапах процесса проектирования, осуществляет ее корректиров-

Рис. 1.9

ку и уточняет задание на проектирование очередного этапа или дает команду проектировщику на повторное проектирование выполненных им ранее одного или нескольких этапов проектирования по уточненным или измененным условиям.

Заказчик должен иметь представление об общих возможностях АСП без каких-либо детальных сведений о структуре АСП и общаться с АСП на обычном неформальном русском языке, используя привычные ему термины и понятия, которые могут быть различными для разных заказчиков. Вместе с тем от заказчика требуется, чтобы в процессе формулировки задачи проектирования он использовал условия проектирования одних и тех же терминов для одних и тех же понятий-объектов. Кроме того, заказчик должен выполнять элементарные операции по осуществлению общения с системой (вызов системы или одной из ее подсистем, порядок передачи задания в систему т. п.).

Очевидно, что любая АСП, реализованная на ЭВМ, должна основываться на использовании формальных языков описания условий проектирования и формальных методов проектирования. В АСП не должно существовать различных толкований терминов и обозначений. Поэтому для упрощения взаимодействия заказчика и проектировщика целесообразно использовать приемщика, в задачу которого входит осуществление взаимосвязи заказчика и проектировщика, а именно перевод условий проектирования с неформального языка заказчика (фраз на русском языке, эскизов и т. п.) на формальный язык проектировщика и, наоборот, перевод результатов проектирования с формального языка проектировщика в удобную для заказчика форму их представления (в виде текста на русском языке, графиков, схем и т. п.). Такие функции приемщика по переводу с одного языка на другой принято называть трансляцией, а устройство (или программа для ЭВМ), осуществляющее такой перевод, - транслятором.

Для упрощения взаимодействия заказчика с приемщиком (транслятором) и приемщика с проектировщиком, а в случае программной или аппаратной реализации транслятора для упрощения программы-транслятора или устройства-транслятора целесообразно в каждой из таких пар взаимодействующих партнеров выделить одного главного (активного) партнера, который мог бы вести диалог, оставив для другого партнера (пассивного) лишь право отвечать на поставленные активным партнером вопросы. При этом, допуская для каждого из партнеров этих двух пар взаимодействующих партнеров активное или пассивное состояние в процессе диалога, можно выделить четыре варианта (см.

рис. 1.9):

активный заказчик (Ai) в первой паре «заказчик-приемщик» и активный приемщик (A2) во второй паре «приемщик - проектировщик» (обозначим это сочетание через А1 А2);

активный приемщик (Б1) в первой паре и активный проектировщик (Б2) во второй паре (Б1Б2); активный заказчик (A1) в первой паре и активный проектировщик (Б2) во второй паре (А1Б2};. активный приемщик (Б1) в первой паре и активный приемщик (А2) во второй паре (Б1А2). В большинстве АСП принят вариант Б1 А2..

Учитывая, что заказчиком является человек, а в качестве проектировщика в АСП используется система программ, представленная в ЭВМ, в зависимости от вида реализации приемщика можно выделить три принципа реализации АСП (рис. 1.10).


За к с

13 :и V

38М

3aw иг.

Транслятор

S)

*u.F.uj4L!\ 1- I I транслятор

СИП

Мани (микво)--ЭВМ Интелектуаль -ныи терминал

! Основная

нооная ЗВМ

Рис. 1.10

В первом из этих принципов (рис. 1.10,а) приемщиком является оператор ЭВМ, владеющий формализованным языком проектирования. Такой принцип целесообразно применять в том случае, когда система программ проектирования (С1111) реализуется в небольшой ЭВМ, в которой из-за ограничения памяти или производительности невозможно выполнение функции приемщика с достаточно мощным сервисным программным обеспечением, облегчающим взаимодействие человека-заказчика с ЭВМ. 1ри использовании мощных ЭВМ приемщиком может служить программа-транслятор вместе с системой программ проектирования в виде АСП (рис. 1.10,6). С появлением достаточно мощных мини-ЭВМ и особенно микро-ЭВМ с развитым программным обеспечением стало удобно функции приемщика реализовать как кросс-транслятор (рис. 1.10,в), т. е. в виде системы программ мини (микро)-ЭВМ, используемой в качестве интеллектуального терминала, подключенного к основной ЭВМ с реализованной на ней СПП. Такие терминалы могут взаимодействовать с основной ЭВМ в режиме разделения времени. При этом возможна специализация кросс-трансляторов по обслуживаемым различным заказчикам и различным областям использования

АСП.

Рассмотрим некоторые из известных АСП. Наиболее развитыми автоматизированными системами проектирования сложных дискретных устройств типа ЭВМ являются системы ПРОЕКТ, разработанная в Институте кибернетики АН УССР под руководством академика В. М. Глушкова [8], и АСП-1, разработанная под руководством члена-корреспондента АН СССР Н. Я. Матюхина и доктора технических наук Е. И. Гурвича [9].

В АСП ПРОЕКТ особо следует выделить операционную часть, структура и организация которой позволяют практически неограниченно расширять систему путем усовершенствования реализуемой методики проектирования и увеличения числа программ. Список директив и семейство разработанных языков делают удобным общение проектировщика с системой.

Система наиболее полно разработана в части логического проектирования, меньшее внимание уделено вопросам техническогого проектирования. Вместе с тем в ней решается ряд задач технологического проектирования.

В системе АСП-1 полно проработан этап технического проектирования, тогда как задачи логического проектирования решаются в основном методами моделирования.

В Институте проблем управления под руководством члена-корреспондента АН СССР М. А. Гаврилова [10] разработана диалоговая автоматизированная система проектирования дискретных устройств промышленной автоматики (ДАСП), имеющая следующие особенности:

1.Система построена по модульному принципу. Каждая из подсистем, на которые она разбита, может использоваться независимо от других и в свою очередь состоит из отдельных программ (модулей), согласованных по входной и выходной информации в рамках одной подсистемы или всей ДАСП. Модульный принцип позволяет использовать для проектирования отдельные пакеты программ, не дожидаясь полного окончания разработки ДАСП, делает ее гибкой к модификациям и расширению путем создания новых модулей на базе старых или введния тех, которые отсутствуют в системе.

2.Для каждой подсистемы ДАСП (кроме обеспечивающейввод условий работы проектируемого дискретного устройства) исходная информация выбирается из единого банка данных, а результат проведенного ею проектирования отсылается обратно в банк данных и может быть использован любой другой подсистемой для дальнейшего проектирования. Одной из основных форм представления информации об устройстве внутри ЭВМ является система булевых функций в нормальной и скобочной формах, для работы с которой специально разработаны алгоритмы и программы, относящиеся к различным подсистемам.

3.Система имеет трехступенчатую иерархию языков описания условий работы ДУ: первичные,


базовые и автоматные. Первичные языки относятся к проблемно-ориентированными обладают развитыми изобразительными средствами, удобными для описания условий работы ДУ того или иного класса (в зависимости от конкретной области применения устройства). Первичные языки близки к естественным. В отличие от первичных, базовые языки не ориентированы на конкретную область применения; их изобразительные средства более универсальны и, как следствие этого, менее доступны проектировщику, мало знакомому с теорией формальных языков. Базовые языки используются в качестве математической модели для первичных языков. В них уже предусматриваются некоторые преобразования по оптимизации решений в процессе проектирования ДУ. Автоматные (или, как их еще называют, стандартные) языки обладают слаборазвитыми изобразительными средствами, но удобны для различных формальных преобразований по оптимизации проектируемого дискретного устройства.

Система ДАСП позволяет транслировать условия работы дискретного устройства, представленные на первичном языке, в выражения на базовом языке, а затем и автоматном языке, в качестве которого используется система булевых функций.

Иерархия позволяет довольно просто использовать в ДАСП другие первичные языки, осуществляя их трансляцию в базовый язык.

4.Ввод условий работы ДУ осуществляется в режиме диалога проектировщика и ЭВМ с использованием дисплея, что позволяет оперативно исправлять ошибки при вводе информации и тем самым ускоряет процесс проектирования.

5.Большинство пограмм ДАСП выполнено на языке ФОРТРАН.

В настоящее время Институт проблем передачи Информации АН СССР занимается разработкой автоматизированной системы проектирования ЭУМ узлов коммутации (АСПУМ) [2]. Предполагается, что система будет открытой, допускающей введение новых программ по мере их готовности. Ориентированная на проектирование специализированных дискретных устройств управления узлов коммутации АСПУМ, в отличие от ДАСП, основана на использовании частных, а не универсальных методов синтеза. Изза сложности и длительности процесса ее реализация осуществляется по частям. На первом этапе разработана подсистема АСПУМ-1, обеспечивающая автоматизацию совмещенного этапа системно-логического проектирования микропрограммных управляющих устройств, применяемых на узлах коммутации малой емкости, или отдельных блоков микропрограммного управления

ЭУМ

Алгоритмы синтеза этапа системно-логического проектирования микропрограммных управляющих устройств в АСПУМ-1 основаны на использовании языка логических схем алгоритмов (ЛСА).

Из других наиболее известных автоматизированных систем проектирования дискретных устройств отметим также АСП, описание которых дано в[11-13].

Контрольные вопросы

1.Какие существуют основные принципы построения дискретных устройств?

2.В чем состоит принципиальное отличие программного моделирования алгоритма функционирования дискретного устройства от структурного?

3.На какие этапы обычно подразделяют процесс проектирования дискретного устройства?

4.Какие существуют типы конструктивных единиц дискретного устройства?

5.Какие существуют принципы взаимодействия человека с ЭВМ в АСП?

Глава 2.

ДИСКРЕТНЫЕ ЭЛЕМЕНТЫ, ИСПОЛЬЗУЕМЫЕ В УСТРОЙСТВАХ СВЯЗИ

2.1. Элементные базисы дискретного устройства

Для построения дискретного устройства применяются как электромагнитные реле, так и различного рода электронные элементы. Применение того или иного типа элементов зависит от назначения ДУ, требуемого быстродействия, массо-габаритных и стоимостных характеристик, требуемой надежности и т. д. Если к быстродействию проектируемого устройства не предъявляются высокие требования, то для



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15] [стр.16] [стр.17] [стр.18] [стр.19] [стр.20] [стр.21] [стр.22] [стр.23] [стр.24] [стр.25] [стр.26] [стр.27] [стр.28] [стр.29] [стр.30] [стр.31] [стр.32] [стр.33] [стр.34] [стр.35] [стр.36]