Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[9]

затворе изменяется сопротивление канала. На рис. 28 приведена конструкция и статические характеристики МДП -транзистора с индуцированным каналом.

Особенностью данного транзистора является то, что управляющий сигнал Изи совпадает по полярности с напряжением Иси .

Полевые транзисторы, так же как и биполярные, могут быть включены в цепь по схеме с общим затвором (ОЗ), с общим истоком (ОИ) и с общим стоком

(ОС).

Отличительным свойством полевых транзисторов является то, что управляющим сигналом является не ток, а напряжение. Это делает их похожими на лампы.

Полевые транзисторы успешно применяются в различных усилительных и переключающих устройствах, они часто используются в сочетании с биполярными транзисторами. На базе полевых транзисторов построены многие интегральные микросхемы.

Полевые транзисторы обозначаются аналогично биполярным, только вторым элементом является буква П, например КП306А - кремневый полевой транзистор, малой мощности, высокочастотный, номер разработки 06 группа А. Необходимая информация по транзисторам приводится в справочной литературе.

2.4 Полупроводниковые резисторы.

Полупроводниковые резисторы нашли широкое применение в электронных приборах. К ним относятся терморезисторы, магниторезисторы, варисторы, фоторезисторы. Принцип действия таких приборов основан на изменении свойств полупроводниковых материалов при воздействии на них температуры, магнитного и электрического полей, электромагнитного излучения.

Полупроводниковый терморезистор представляет собой прибор, сопротивление которого изменяется при изменении температуры. Зависимость сопротивления от температуры имеет вид:

Rt=A exp (B/T),

где А, В - постоянные, определяемые свойствами полупроводникового материала и конструкцией терморезистора, Т-температура.

С увеличением температуры сопротивление терморезистора уменьшается. Температурный коэффициент сопротивления терморезистора лежит в пределах от 2 до 8,5% на градус.

Недостатком полупроводниковых терморезисторов является нелинейная зависимость сопротивления от температуры и значительный разброс параметров. Терморезисторы могут быть выполнены в виде цилиндрических стержней, дисков, бусинок, плоских прямоугольников. Для защиты от внешней среды их покрывают лаками и эмалями.


Часто используют терморезисторы типа ММТ (медно-марганцевые) и КМТ (кобальто-марганцевые).

Терморезисторы применяются в качестве первичных преобразователей температуры для контроля и регулирования температуры, а также в схемах температурной компенсации.

Магниторезисторы представляют собой полупроводниковый прибор, электрическое сопротивление которого зависит от воздействия на него магнитного поля. Магниторезисторы позволяют обеспечить хорошую гальваническую развязку. Для формирования магнитного поля можно использовать постоянный магнит или электромагнит.

Зависимость сопротивления магниторезистора от величины магнитного поля нелинейна. С увеличением величины магнитного поля сопротивление возрастает.

Основными параметрами магниторезистора являются:

-номинальное сопротивление при отсутствии магнитного поля,

-мощность рассеивания,

-TKR,

-зависимость RB=f (H).

1 0,5 0 0,5 1

Рис. 29. Зависимость RfH) дляРис 30. Зависимость Rв=f(U).

магниторезистора

При увеличении магнитной индукции от 0 до 1Тл сопротивление магниторезистора увеличивается в 10-15 раз.

Магниторезисторы нашли применение в коммутационной технике: бесконтактных выключателях, реле, контактах управления.

Варисторы представляют собой полупроводниковые резисторы, сопротивление которых зависит от приложенного напряжения. Зависимость сопротивления от напряжения нелинейная и имеет вид (рис.30). Сопротивление Rb уменьшается при увеличении приложенного напряжения. Варисторы применяются для защиты от перенапряжений, защиты от помех, для искрогашения в электрических машинах. Они ограничивают возникающее напряжение, особенно при коммутации индуктивной или емкостной нагрузки и тем самым позволяют значительно повысить срок службы контактов реле и т. д.


Фоторезисторы - представляют собой полупроводниковые приборы, сопротивление которых зависит от электромагнитного излучения. ( см. 2.5.).

2.5 Фотоэлектрические приборы

Фотоэлектрические приборы строятся на принципах фотопроводимости. Фотопроводимость - это свойство веществ изменять свою электропроводность под воздействием электромагнитного излучения.

Фотоэлектрические приборы делятся на две группы:

•с внешним фотоэффектом,

•с внутренним фотоэффектом.

К приборам с внешним фотоэффектом относятся вакуумные и газонаполненные фотоэлементы (ФЭ) и фотоэлектронные умножители (ФЭУ).

К приборам с внутренним фотоэффектом относятся фоторезисторы, фотодиоды, фототранзисторы, фототиристоры.

В качестве излучателей используется солнечный свет, лампочки накаливания и другие источники света.

Фотоэлемент (ФЭ) - это электровакуумный или газоразрядный диод, в

стеклянном баллоне которого установлены Афотокатод и фотоанод (рис. 31).

Фотокатод представляет собой слой, покрывающий внутреннюю поверхность колбы, выполненный из полупроводникового материала, чувствительного к внешнему излучению. Анод выполнен в виде кольца или Рис 31. Фотоэлемент. рамки и размещен внутри колбы. ФЭ

разделяются на вакуумные и газоразрядные. При отсутствии излучения анодный ток равен нулю. При освещении фотокатода возникает фотоэмиссия и в цепи анода протекает ток.

Фотоэлементы используются в первичных преобразователях информации.

Фотоэлектронный умножитель - представляет собой электровакуумный прибор, преобразующий энергию электромагнитного излучения в электрические сигналы с использованием вторичной электронной эмиссии. Состоит из стеклянного баллона, внутри которого расположены ускоряющие электроды, умножительные электроды и анод. При освещении фотокатода возникает электронный поток, который фокусируется и направляется на умножительные электроды, где за счет вторичной эмиссии он усиливается и попадает на анод.

Фоторезистор представляет собой полупроводниковый прибор, сопротивление которого зависит от освещенности. На рис.32 показана конструкция фоторезистора и зависимость его сопротивления от светового

Ф

анод

фотокатод

стеклянный баллон



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15] [стр.16] [стр.17] [стр.18] [стр.19] [стр.20] [стр.21] [стр.22] [стр.23] [стр.24] [стр.25] [стр.26] [стр.27] [стр.28] [стр.29] [стр.30] [стр.31] [стр.32] [стр.33] [стр.34] [стр.35] [стр.36] [стр.37] [стр.38] [стр.39] [стр.40] [стр.41] [стр.42] [стр.43] [стр.44] [стр.45] [стр.46] [стр.47] [стр.48] [стр.49] [стр.50] [стр.51] [стр.52]