Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[17]

Режим А характерен тем, что форма выходного сигнала ивых(Г) повторяет форму входного сигнала ивх(Г) за счет работы транзистора в активной зоне без захода в область насыщения и отсечки.

Режим характеризуется минимальными нелинейными искажениями.

В это же время работа усилителя в режиме А характеризуется низким КПД, который теоретически не может превышать 0,5, что объясняется постоянным током Тко вне зависимость от наличия или отсутствия входного сигнала. Поэтому такой режим используется только в маломощных каскадах, в которых необходимо иметь минимальные нелинейные искажения.

На основе характеристик рис.53, можно пояснить графикоаналитический метод расчета усилителя. По графикам можно определить:

коэффициент усиления по току КТ = lKmax-Тк°- = iKmax ;

Т б. max Т б 01 б / max

коэффициент усиления по напряжению К U

коэффициент усиления по мощности K =

u U ;

вх. max

U iK

вых. max К. max

P

б. max

U i б

вх. max б

Режим В характеризуется тем, что напряжение смещения исм=0, а следовательно, рабочая точка выбирается в самом начале входной характеристики. Особенностью режима В является то, что при отсутствии входного сигнала отсутствуют базовые и коллекторные токи.

При поступлении входного сигнала ток в коллекторе имеет пульсирующий характер и протекает в течении половины периода. Режим В характеризуется высоким КПД, который может достигать 70%, однако выходной сигнал сильно искажается. Поэтому такой режим применяется только в двухтактных усилителях.

Режим АВ занимает промежуточное положение между режимом А и В. Он характеризуется небольшим напряжением смещения исм меньшими нелинейными искажениями по сравнению с режимом А. Режим АВ используется в высококачественных двухтактных усилителях мощности. Режим С характеризуется тем, что рабочая точка на входной характеристике сдвинута влево от начала координат. Следовательно, более половины периода транзистор находится в закрытом состоянии. Режим С характеризуется высоким КПД, большими нелинейными искажениями и применяется в генераторах частоты.

Режим D характеризуется тем, что усилительный элемент может находится в открытом (режим насыщения) либо в закрытом (режим отсечки) состояниях.


Таким образом, ток в выходной цепи может принимать только два значения: ТКтах=Тнас и ТКлтп»0. Скорость перехода из одного состояния в другое характеризует быстродействие усилительного элемента. Обычно инас<1В,

Ucm

А

Цвх(г)

ибэ

1к мах

А

1б1

Л

инас

ип

V t

Тк

мак

икэ

а)б)

Рис. 55. Входная (а) и выходная (б) характеристики усилителя в режиме работы D

0

поэтому КПД такого усилительного каскада близок к 1.

Режим работы D, который называют еще ключевым режимом, применяется в импульсных схемах.

Методы стабилизации работы усилителя по схеме с ОЭ.

Основные параметры каскада усилителя с ОЭ зависят от внешних возмущений и в первую очередь от температуры. При изменении температуры изменяется обратный ток ТКобр., напряжение ибэ, коэффициенты a и b • Все эти изменения принято характеризовать понятием дрейф нуля усилителя. Внешние воздействия, изменяя ток покоя транзистора, выводят транзистор из заданного режима. Это особенно опасно для усилителей, работающих в режиме А, т.к. транзистор может перейти в нелинейную область характеристики.

Существуют три основных метода стабилизации работы транзисторного каскада: термокомпенсация, параметрическая стабилизация и введение отрицательной обратной связи.

Метод термокомпенсации заключается в том, что отдельные термозависимые элементы или целиком каскады помещаются в термокамеру с постоянной температурой.


ri

1

X

r2

vt1

Rk

3

ri

ri

vt2

un

vt1

Rk

3

а)б)

Рис. 56. Параметрическая стабилизация с использованием терморезистора (а) и полупроводникового транзистора (б).

ип

Т

ивх

Ri ik. l vt1

Rk

{0

1

R2

Ra

Сэ

3

Методпараметрической

стабилизации основан на введении в схемуэлементов,которые

компенсируют изменение параметров схемы при внешних воздействиях среды. Например, воздействие температуры может быть уменьшено введением в схему полупроводниковых элементов или терморезисторов.

Метод введения отрицательной обратной связи является более распространенным. Отрицательная обратная связь (ООС) осуществляется за счет введения в цепь эмиттера резистора Ra. Ток эмиттера, протекая по резистору Ra, создает на нем падение напряжения иоос=1Дэ. Это напряжение автоматически складывается с напряжением на базе, однако, направлено встречно и компенсирует температурные изменения напряжения на базе транзистора.

Введение ООС увеличивает входное сопротивление усилительного каскада, расширяет полосу пропускания, уменьшает линейные и нелинейные искажения, делает работу схемы более устойчивой.

Рис. 57. Транзисторный усилитель с отрицательной ОС по току.

3.5. Усилительный каскад по схеме с общим коллектором

Усилитель на транзисторе с ОК более часто называют эмиттерным повторителем. Он представляет собой каскад со 100%-й последовательной отрицательной обратной связью по току. В отличие от усилителя по схеме с ОЭ, схема с ОК ( рис.58) не инвертирует входной сигнал.



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15] [стр.16] [стр.17] [стр.18] [стр.19] [стр.20] [стр.21] [стр.22] [стр.23] [стр.24] [стр.25] [стр.26] [стр.27] [стр.28] [стр.29] [стр.30] [стр.31] [стр.32] [стр.33] [стр.34] [стр.35] [стр.36] [стр.37] [стр.38] [стр.39] [стр.40] [стр.41] [стр.42] [стр.43] [стр.44] [стр.45] [стр.46] [стр.47] [стр.48] [стр.49] [стр.50] [стр.51] [стр.52]