Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[10]

потока. Эта зависимость нелинейна. Фоторезисторы имеют высокую инерционность и многие из них не способны работать на частотах более 100Гц.

Фотодиод представляет собой полупроводниковый прибор с n-p -переходом.

Принцип работы фотодиода заключается в том, что при его освещении возрастает обратный ток, и он не зависит от обратного напряжения. На границе перехода "n-p" возникает ЭДС, величина которой зависит от освещенности и может достигать 0,5-1В. При этом обратное сопротивление фотодиода уменьшается.

электрод

б)

а)

в)

Рис 32. Конструкция (а), условное обозначение (б) и зависимость Я=Г(ф) для фоторезистора.

Фотодиоды используются в электрических цепях измерительной аппаратуры и аппаратуры передачи данных. Они относятся к быстродействующим приборам и реагируют на сигналы до 1МГц. Фотодиоды могут также использоваться в качестве источников питания, например, в солнечных батареях.

Основными характеристиками фотодиодов являются световая, вольт-амперная и спектральная.

J

Сч

ф

U

Ж

б)

ф4 ф3 ф2 ф1

sirs

5s

а)

U

в)

Рис 33. Конструкция (а), условное обозначение (б) и вольт-амперная характеристика (в) фотодиода.


фотодиода является активным только преобразование энергии

Фототранзистор в отличии от преобразователем, в нем происходит не излучения, но и усиление.

Фототранзистор имеет три электрода: эмиттер, коллектор и базу, причем база подвергается облучению потоком лучистой энергии. Конструктивно фототранзисторы выполняются в металлическом корпусе со стеклянным окном.

Внутренний эффект в полупроводнике может быть использован для построения других приборов, например, фототиристоров, однопереходных фототранзисторов и др. Оптоэлектронные приборы содержат одновременно источник и приемник световой энергии. Для оптопары как входным так и выходным параметром является электрический сигнал. Особенностью оптопар (оптронов) является отсутствие гальванической связи между входными и выходными цепями. В качестве излучателя оптопары могут быть использованы

а)б)в)г)

Рис 34. Условное обозначение оптопар: а-резистивная, б-диодная, в-транзисторная, г-тиристорная.

светоизлучающий или инфракрасный диод, электрическая лампочка или полупроводниковый лазер. В качестве приемника оптопары находят применение рассмотренные выше фотоэлектрические приборы: фоторезисторы, фотодиоды, фототранзисторы, фототиристоры. На рис.34 приведены условные обозначения основных типов оптопар.

Оптопары широко применяются в аппаратуре передачи данных, преобразователях информации, системах автоматического управления. Маркировка оптронов включает в себя семь символов:

•первый обозначает материал: А(3) - арсенид галлия;

•второй символ - буква О означает оптопара;

•третий указывает тип приемника: Д -диод, Т - транзистор, У - тиристор;

•четвертый, пятый и шестой символы указывают номер разработки;

•седьмой символ - буква, означает группу.

Например: АОД130А - диодная оптопара на основе соединений галлия, номер разработки 130, группа параметров А, общего применения.

3 ОТ110 А - транзисторная оптопара, на основе соединения галлия, номер разработки 110, группа параметров А, специального применения.


2.6. Интегральные схемы (ИС)

Интегральные схемы в настоящее время являются наиболее распространенной элементной базой при проектировании электронной аппаратуры. Согласно ГОСТ 17021-88 интегральная микросхема - это микроэлектронное изделие, выполняющее определенную функцию преобразования, обработки сигнала или накопления информации и имеющее высокую плотность упаковки электрически соединенных элементов и кристаллов, которые рассматриваются как единое целое.

В зависимости от технологии изготовления интегральные микросхемы могут быть: полупроводниковыми, пленочными и гибридными.

Полупроводниковая микросхема - это микросхема, в которой все элементы и межэлементные соединения выполнены в объеме и на поверхности полупроводника.

Пленочная микросхема - микросхема, в которой все элементы и межэлементные соединения выполнены в виде пленок проводящих и диэлектрических материалов. Различают тонкопленочные и толстопленочные

ИС.

Гибридная микросхема - это микросхема, в которой пассивные элементы выполнены в виде пленок, нанесенных на диэлектрическую подложку, а активные элементы являются навесными. В качестве активных элементов обычно используют бескорпусные диоды, транзисторы или ИС.

В зависимости от функционального назначения интегральные микросхемы делятся на аналоговые и цифровые. Аналоговые ИС предназначены для преобразования и обработки аналоговых сигналов, т.е. сигналов, изменяющихся по закону непрерывной функции. Цифровые ИС предназначены для преобразования и обработки дискретных сигналов.

В зависимости от количества элементов и компонентов, входящих в ИС, различают:

•ИС малой степени интеграции (МИС) - до 50 элементов,

•ИС средней степени интеграции (СИС) - до 500 элементов,

•ИС большой степени интеграции (БИС) - до 10000 элементов,

•ИС сверхбольшой степени интеграции (СБИС) - более 10000 элементов.

Современные СБИС содержат до 4 млн элементов.

Интегральные микросхемы могут быть построены на базе биполярных транзисторов и на базе МДП-транзисторов (полевых). Последние отличаются минимальными потребляемыми мощностями.

Корпуса микросхем изготовляются из стекла, металлостеклянных и металлокерамических композиций, а также из пластмасс и керамики. Наибольшее распространение получили металлокерамический, металлостеклянный, стеклокерамический и пластмассовый корпуса.



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15] [стр.16] [стр.17] [стр.18] [стр.19] [стр.20] [стр.21] [стр.22] [стр.23] [стр.24] [стр.25] [стр.26] [стр.27] [стр.28] [стр.29] [стр.30] [стр.31] [стр.32] [стр.33] [стр.34] [стр.35] [стр.36] [стр.37] [стр.38] [стр.39] [стр.40] [стр.41] [стр.42] [стр.43] [стр.44] [стр.45] [стр.46] [стр.47] [стр.48] [стр.49] [стр.50] [стр.51] [стр.52]