Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[1]

Блок истаноВки и коррекции

1

Блок счетчиков

сек.

мин.

час.

ед.

dec.

ед.

dec.

ед. \дес\

"Т i \ 1 t t

Комму та тор

Дешифратор

а Ъ с £ е f

I

*©*р о р q □

U U U О

индикатор

Рис. 2. Структурная схема часов с динамической индикацией

Работа блока динамической индикации происходит следующим образом.

После подключения дешифратора к одному из счетчиков на его выходах, обозначенных на рис. 2 так же, как и сегменты индикатора, формируется кодовая комбинация сигналов. Эти сигналы поступают на сегменты знаков всех разрядов одновременно. Однако высвечивается только тот знак, на управляющей сетке которого присутствует положительный потенциал. С поступлением очередного тактового импульса коммутатор производит подключение дешифратора к соседнему счетчику. На выходах дешифратора формируется новая комбинация сегментных сигналов. Для ее отображения знаком соответствующего разряда на сетку этого разряда поступает управляющий сигнал. Следовательно, для обеспечения безошибочной индикации необходимо, чтобы сеточные и сегментные импульсы имели одинаковую длительность и были строго синхронизированы. Для поочередного высвечивания знаков управляющие импульсы должны поступать на сетки разрядов с определенным взаимным сдвигом во времени. Пра частотах повторения сегментных и сеточных импульсов десятки - сотни герц свечение всех знаков индикатора наблюдается как непрерывное.

Использование динамической индикации позволяет уменьшить число элементов структурной схемы часов и таким образом упростить ее, а также снизить энергопотребление.

Электронные часы при необходимости могут быть дополнены программируемым сигнальным устройством (будильником). Такое устройство имеют многие серийные часы настольного типа, а также некоторые модели наручных часов, в частности «Электроника Бб-208».

Принцип построения и работу сигнального устройства рассмотрим на примере схемотехнического варианта, представленного на рис. 3. Устройство состоит лз блока программирования и блока звуковой сигнализации.

В блоке программирования находятся дешифраторя часов и минут и схема совпадения (логическая схема И) на диодах VD1-VD4 и резисторе RL.

блок сче/лчцкод

сек.щ

мин.

час.

еЗ ]дес

ед \дес

ед \hc

5лдк программирования

Блок дешифраторов

Блок индикации

.ДШ dec. vac.

ДШ ед. час.

ЙДШ вес. май.

ЛШ ее. мин.

о i г

0 1 2 3 * 5

III 1 1 N1II М 1 MINI II MUM 11 .1 !

VD1

VB2

I

VU3

V2J Rf

WWn --

m --

Блрк iSt/KoSoit СИШлизацци

mi

V~D5

Д9Д

Рис. 3. Структурная схема часов с сигнальным устройством

Программирование сигнального устройства заключается в том, что переключателями SI - S4 входы схемы И соединяются с теми выходами дешифраторов, на которых в требуемое время будут сформированы сигналы 1, соответствующие высокому уровню напряжения. В этот момент диоды VD1 - VD4 закроются и на вход блока


звуковой сигнализации поступит напряжение высокого уровня, равное приблизительно иип.

Блок звуковой сигнализации состоит из логического элемента DD1 и электродинамического преобразователя (динамика) типа ТМ-2. Ко входам элемента DD1 подведены импульсные сигналы, следующие с частотами 1024 и 1 Гц. До установленного переключателями S1 - S4 времени хотя бы один из диодов VD1 - VD4 открыт и поэтому на входе элемента DD1, соединенного со схемой совпадения контактами нажатой кнопки «Звонок», постоянно присутствует сигнал 0, т. е. напряжение низкого уровня. Следовательно, элемент DD1 закрыт, напряжение на его выходе не зависит от сигналов на других его входах и имеет постоянный уровень, близкий к значению инп, поэтому ток в цепи динамика ТМ-2 отсутствует. В таком же состоянии элементы блока звуковой сигнализации будут находиться и при отжатой кнопке «Звонок», поскольку один из входов элемента DD1 через резистор соединен с корпусом.

В определенное время на всех выходах дешифратора, к которым подклкь чены диоды схемы совпадения, установятся сигналы 1 и закроют диоды. Тогда ко входу элемента DD1 через резистор Ri будет приложено напряжение высокого уровня, близкое к значению Ua.n. В этом режиме состояние выхода элемента DD1 определится только сигналами на других его входах, т. е. импульсными последовательностями с частотой 1024 и 1 Гц. В результате на выходе элемента DD1 появится последовательность импульсов с частотой повторения 1024 Гц, прерываемая с частотой 1 Гц. Этими колебаниями возбуждается динамик ТМ-2 и появляется звуковой сигнал.

2. ЭЛЕМЕНТНАЯ БАЗА ЭЛЕКТРОННЫХ ЧАСОВ

Элементную базу электронных часов составляют интегральные микросхемы, миниатюрные кварцевые резонаторы, электронные индикаторы. Наибольшее влияние на функциональные возможности и основные характеристики часов оказывают интегральные микросхемы. В этом параграфе приведена общая характеристика серий микросхем, которые могут быть использованы в электронных часах различного назначения.

В электронных часах микросхемы работают с низкой частотой переключения. Например, для делителей в блоке генератора секундных импульсов наибольшей является частота ЗГ, которая при использовании стандартных кварцевых резонаторов типа РК72, РК196, РК101 равна 32768 Гц. Функциональные узлы в блоках счетчиков и дешифраторов переключаются с частотой, не превышающей 1 Гц. Поэтому основной характеристикой, по которой следует выбирать микросхемы для электронных часов, является мощность, потребляемая ими от источника напряжения питания в статическом и динамическом режимах.

В широкой номенклатуре серийных интегральных микросхем наилучшими энергетическими характеристиками обладают микросхемы на комплементарных МДП-транзисторах с индуцированными каналами (сокращенно КМДП-транзисторы). Такие микросхемы выпускают в составе серий К176, К561, К512 и

др.

Комплементарными называют два МДП-транзистора, один из которых имеет канал с дырочной проводимостью (р-типа), другой - с электронной (n-типа). Отсюда и название этих транзисторов, взаимно дополняющих по типу проводимости канала, от латинского complementum - дополнение.

При соединении КМДП-транзисторов затворами и стоками (рис. 4) получается ключ (инвертор), в котором управляющий входной сигнал подается на объединенные затворы, а выходной снимается с точки соединения стоков транзисторов.

В статическом режиме при наличии на входе напряжения низкого уровня, в частности, равного нулю, транзистор VT1 закрыт, a VT2 открыт, поскольку между его затвором и истоком устанавливается напряжение высокого уровня, равное иип, приложенное минусом к затвору. Если напряжение на входе ключа имеет высокий уровень, близкий к Um.M, то транзистор VT1 открыт, a VT2 закрыт, так как разность потенциалов между его затвором и истоком близка к нулю, т. е. значительно меньше порогового напряжения.

Таким образом, в любом из двух статических состояний один из транзисторов закрыт и благодаря этому через ключ протекает пренебрежимо малый остаточный ток и, следовательно, от источника питания потребляется малая мощность. В этом и заключается основное достоинство КМПД-микросхем, построенных на основе рассмотренной ключевой схемы.

В режиме переключения обеспечивается сравнительно высокое быстродействие ключа, позволяющее использовать КМПД-микросхемы на частотах до 1 - 3 МГц. Объясняется это свойство тем, что при включении схемы образуется низкоомная цепь разряда выходной емкости Со через открытый транзистор VT1, при выключении - низкоомная цепь заряда емкости через открытый транзистор VT2. Из-за увеличения тока, необходимого для заряда емкости, в переходном режиме потребляемая схемой динамическая мощность существенно возрастает и тем больше, чем выше частота переключения [4,5]: Рпотдин = С0и2и.пР, где С0=Сн + Свых; Сн - емкость нагрузки; СВых - выходная емкость схемы ключа; F - частота переключения.

Динамическая потребляемая мощность на два-три порядка выше статической, что должно быть учтено при разработке высокочастотных функциональных узлов. Такая необходимость может возникнуть, например, при использовании кварцевых резонаторов, работающих с частотой сотни килогерц, в частности РК230.

Одним из замечательных свойств КМДП-микросхем является их способность выполнять свои функции при изменении в широком диапазоне значений напряжения источника питания.


Микросхемы серий К176 работают при номинальном напряжении питания 9 В и сохраняют работоспособность при понижении напряжения питания до 6 В и повышении до 12 В (при длительности не более 3 с). В микросхемах серий К561, изготовленных по более совершенной технологии, пороговые напряжения КМДП-транзи-сторов снижены, что позволило расширить диапазон рабочих значений напряжения питания от 3 до 15 В. Некоторые микросхемы серии К512 и большие интегральные схемы для наручных электронных часов характеризуются самым низким для КМДП-микросхем напряжением источника питания, составляющим 1,3 В.

Рис. 4. Ключ на КМДП-транзисторах

Наиболее широкое применение в крупногабаритных электронных часах, как серийных, так и радиолюбительских, находят микросхемы серии К176. Это объясняется тем, что серия К176 предназначена для указанной области применения. В ее составе имеются логические микросхемы, в том числе с повышенной нагрузочной способностью, дешифраторы, триггеры, счетчики-делители, многие из которых выполнены на одном кристалле с дешифраторами и поэтому допускают подключение к своим выводам семисегментных индикаторов. Серия К.176 продолжает развиваться. Она дополняется все более сложными микросхемами, каждая из которых может заменить две-три микросхемы с более простыми функциями. Уже в настоящее время часы с сигнальным устройством могут быть выполнены всего на трех микросхемах этой серии. Поскольку серия К176 является основой элементной базы электронных крупногабаритных часов, рассмотрим подробнее входящие в ее состав микросхемы. При этом основное внимание уделим тем их свойствам, которые оказывают значительное влияние на схемотехнические решения и реализацию функциональных блоков, часов.

3. МИКРОСХЕМЫ СЕРИИ К176

Все микросхемы серии независимо от назначения и сложности характеризуются электрическими параметрами, которые имеют следующие значения [4,5]:

Напряжение источника питания, В.....9±5%

Выходное напряжение логического О, В . . . . <0,3 Выходное напряжение логической 1, В . . . . >8,2

Статическая помехоустойчивость, В.....0,9

Входной ток логического 0, мкА......- 0,1

Входной ток логической 1, мкА......<0,1

Коэффициент разветвления по выходу (статический) 100 Максимальный выходной ток в состояниях 0 и 1, мА 1

Наименьшее сопротивление нагрузки, яри которой сохраняется уровень логической 1 на выходе, кОм 150

Диапазон допустимых значений входного напряжения, iB.............- 0,2-+ иип

Среднее время задержки распространения сигнала через логический элемент, ж......250

Наибольшая частота переключения триггера, МГц . 1

Потребляемая мощность одним логическим элементом в статическом режиме, мкВт..... <0,25

Конструктивно микросхемы оформлены в пластмассовые корпуса с 14 или 16 выводами.

Логические микросхемы выполняют операции И, НЕ, И-НЕ, ИЛИ-НЕ. Каждая микросхема состоит из нескольких логических элементов, которые объединены по цепям питания, но функционально автономны, т. е. могут использоваться независимо один от другого. Элемент, выполняющий логическую операцию НЕ, т. е. инвертор, представляет собой ключ (см. рис. 4). При входном сигнале 1 на его выходе устанавливается уровень 0, а при входном сигнале 0 выходной сигнал имеет уровень 1.

Примером микросхемы с логическими элементами И-НЕ может служить К176ЛА7, содержащая четыре таких элемента с двумя входами каждый (рис. 5,а). Принципиальная схема логического элемента И-НЕ (рис. 5,6) состоит из двух КМДП-ключей, нижние транзисторы VT1, VT2 которых соединены последовательно, а верхние VT3, VT4 параллельно. Диоды VD1, VD2 предохраняют входы от воздействия больших отрицательных напряжений. Если хотя бы на одном из входов Х1 или х2 присутствует сигнал с уровнем 0, то один из нижних транзисторов закрыт, а один из верхних открыт. Поэтому на выходе элемента независимо от значения сигнала на другом входе устанавливается напряжение высокого уровня, т. е. сигнал 1. Только при наличии 1 на обоих входах, когда нижние транзисторы открыты, а верхние закрыты, на выходе устанавливается сигнал 0. Таким образом, логический элемент реализует функцию И-НЕ: y - XiXi.



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15]