Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[0]

Известия Академии Наук. Теория и системы управления, 1999, № 5, с. 127-134

УДК 519.7

метод автономного адаптивного управления

(С) 1999 г.А. А. Жданов

Москва, ИСП РАН

Работа выполнена при поддержке РФФИ Поступила в редакцию 10.03.99 г.

Аннотация

В статье рассматриваются основные положения методологии построения управляющих систем на имитационных принципах, которая названа методом автономного адаптивного управления (ААУ). Из общих для всех нервных систем свойств: дискретности строения и принципа действия, высокой неопределенности начальных знаний и приспособленности аппаратно-программной компоненты, а также необходимости осуществления управления и обучения в одном процессе, выводится принцип действия и строение управляющей системы. Предлагаются конкретные решения, позволяющие строить практически действующие управляющие системы, работающие с сравнительно простыми знаниями. Решения описывают способы построения формальных нейронов, подсистем формирования и распознавания образов, базы знаний, принятия решений и аппарата эмоций. Названы примеры практических приложений.

Введение

Успехи прагматического направления исследований по искусственному интеллекту отодвинули в последние два десятилетия на второй план представляющую фундаментальный интерес проблему исследования принципов управления в живом и их имитации, поставленную в свое время Н. Винером [1]. Имитационное направление, которому уделяли внимание такие исследователи, как У. Кеннон [2], П. К. Анохин [3], А. А. Ляпунов [4], М. Мессарович [5] и многие другие, всегда являлось источником радикальных идей, которые прагматическое направление доводило в эволюционном порядке до практически полезных реализаций. Обратное взаимодействие прагматики на имитацию также является плодотворным, поскольку привносит новый математический и технический инструментарий, позволяющий строить и исследовать математические модели систем.

На наш взгляд, в настоящее время после пятидесятилетнего развития в прагматическом направлении формальных моделей нейрона и нейросети, предложенных У. Маккалоком и У. Питтсом в 1943 году [6] и Ф. Розенблаттом в 1953 году [7] (направление получило название "искусственные нейронные сети (ИНН)") наступает необходимость перехода к более адекватным действительности моделям нейрона, нервной системы и мозга. С одной стороны, накопился груз претензий к используемым в ИНН сильно упрощенным моделям нейрона и нейросети, претендующим, в лучшем случае, на простую модель небольшого регулярного участка нервной системы. С другой стороны, складывается впечатление, что в научном сообществе уже наработан и достаточно развит новый идейный, математический и программно-аппаратный инструментарий, который в


совокупности может придать проблеме имитации новый импульс. Не имея здесь возможности перечислить все соответствующие достижения, выскажем убеждение, что на основе идей системного подхода, математического аппарата теории распознавания, теории принятия решений, информационных систем представления знаний, нейросетевых технологий и современных аппаратно-программных средств, можно построить новые имитации нервных систем и развить их до практически полезного уровня.

Имитационный метод автономного адаптивного управления

Здесь коротко представим основные положения одной концептуальной модели нервных систем, названной методом "автономного адаптивного управления" (ААУ) [8-21].

Пусть под объектом управления (ОУ) понимается моделируемый организм, под управляющей системой (УС) - моделируемая нервная система, под системой - совокупность УС, ОУ и среды.

Примем следующие четыре исходных условия, характерных для нервных систем.

1."Условие автономности" под которым будем понимать только то обстоятельство, что УС является подсистемой ОУ, т.е. УС находится на борту ОУ и осуществляет управление на основе знаний, добываемых самостоятельно, взаимодействуя со своим окружением посредством блока датчиков (БД) и исполняющего органа (ИО). Тем самым УС а ОУ а Среда = Система, УС и БД и ИО = ОУ.

2."Условие дискретности", которое отражает дискретность структуры УС (конечное множество нейронов, связей, датчиков, исполнителей) и принципа ее функционирования (дискретность нервных импульсов, образов - как элементов информации, моментов времени). Однако при этом возможен непрерывный характер изменения некоторых параметров, таких как размеры синапсов, частотные характеристики импульсных последовательностей.

3."Условие максимальной начальной приспособленности" отражает наличие приспособленности ОУ и УС к усредненным условиям жизни ОУ в данной среде в результате действия механизмов типа естественного отбора, что определяет типы датчиков и исполнителей, классы потенциально возможных в данной системе образов, оценки качества важнейших для ОУ образов, и т.п. При синтезе ОУ и УС процесс естественного отбора должен быть заменен максимальным использованием априорной информации.

4."Условие минимума исходных знаний" отражает наличие информационных пространств, которые должны быть заполнены знаниями, найденными УС в процессе функционирования в реальной системе. Это условие соответствует наличию неопределенности свойств системы, максимальной для УС в момент начала ее функционирования.

Целевыми функциями УС должны быть а) выживание ОУ и б) накопление знаний. Эти две целевые функции взаимосвязаны в том отношении, что достижение одной из них повышает вероятность достижения другой.

Из сказанного вынужденно следует представление о системе (рис.1), в котором можно видеть ОУ, погруженным в среду, УС погруженной в ОУ. Пусть каждый из этих макрообъектов оказывает воздействия на систему через свой выход. Каждый из макрообъектов пусть воспринимает воздействия системы через свой вход.


Кроме того, в системе важно наличие источников случайных воздействий (белые кружки на рисунке - "истоки") и мест поглощения воздействий (черные кружки на рисунке - "стоки"). Такая схема позволяет увидеть все возможные маршруты распространения воздействий в системе (помеченные буквами стрелки на рисунке) [8].

Очевидно, что для достижения своих целевых функций УС должна найти те из воздействий h, которые образуют цикл "управляемого взаимодействия (УВ)" h - d -> i - a - h - ... , зафиксировать информационное отображение цикла УВ в

своей памяти - базе знаний (БЗ), оценить полезность тех или иных элементов знаний и использовать эти знания для выживания, одновременно прилагая усилия для получения и накопления новых знаний. Здесь a это информационный процесс в УС, h -процесс преобразования информационных команд в физические воздействия, d это различные процессы в окружающей среде, i - процесс преобразования части входных воздействий в информационные входные сигналы для УС. Наличие в системе истоков и стоков вносит в УВ многочисленные случайные компоненты и приводит к потерям информации. Накапливая знания, УС стремится к уменьшению неопределенности в своем отображении УВ [9].

Подобное макроописание позволяет понять задачу, которую должна решать УС. В общем виде можно видеть следующую ее постановку. На заданное множество входных полюсов УС v1, v2, ..., vi, ..., vn (например, это n бинарных выходов БД) поступает входной поток информации. Пусть, например, это будет эквидистантная во времени последовательность двоичных векторов Va(t1), Vb(t2),..., Vc(t]),..., Vd(t), где t - текущий момент времени. Если последовательность не эквидистантная, то должны быть средства синхронизации потоков данных. Согласно рис. 1, семантически каждый вектор Vc(tk) может содержать информацию, пришедшую ко входу УС по маршрутам i, b и/или p. Здесь i это информация, поступившая с датчиков, b - информация, отражающая действия, совершенные УС, p это незакономерные помехи от истоков в ОУ (информация от i и b также содержит случайные компоненты). Информация, поступающая по маршрутам i, b и p, может отображаться на определенные подмножества компонент вектора Vc(tk).

Первая задача, которую должна и может решать УС, состоит в нахождении неслучайных регулярных пространственно-временных комбинаций компонент в потоке входных векторов Va(t1), Vb(t2),..., Vc(tk),..., Vd(t). Произвольные примеры трех таких образов показаны на рис. 2.

Если УС обнаруживает наличие такой регулярности, то УС должна: а) запомнить информацию о ней как самостоятельный объект - образ [9,10], б) уметь распознавать прообраз этого образа во входной информации (регулярность, которая привела к формированию образа) при его последующих появлениях, в) при накоплении достаточной статистической надежности - уметь распознавать образ протяженного во времени прообраза раньше, чем закончится его наблюдение на входных полюсах и при наличии помех, г) оценить соответствие этого образа целевой функции выживания ОУ.



[стр.Начало] [стр.1] [стр.2] [стр.3]