Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[16]

ГЛАВА 3. ОПЕРАЦИИ КОНЪЮНКЦИИ И ДИЗЪЮНКЦИИ 1. Предварительные замечания

Как было установлено в первой главе, операции конъюнкции л = min и v = max, введенные Заде, обладают почти всеми свойствами соответствующих булевых операций. Это позволяет легко обобщать на нечеткий случай многие понятия «четкой» логики и, более обще, «четкой» математики. Однако с многих точек зрения эти операции являются ограничительными. Возможность рассмотрения более «мягких» операций конъюнкции и дизъюнкции обсуждал Заде еще в своих первых работах.

Целесообразность применения тех или иных операций конъюнкции и дизъюнкции в нечеткой логике может рассматриваться с разных позиций в зависимости от области приложений нечеткой логики.

Во-первых, эти операции могут рассматриваться с точки зрения моделирования лингвистических связок «и» и «или», используемых человеком. С одной стороны, операции min и max являются адекватными в порядковых шкалах, в которых обычно измеряются лингвистические оценки. Это обуславливает их широкое применение в нечетких лингвистических моделях. Однако недостатком этих операций является то, что их результат равен значению одного операнда и не меняется при изменении значений второго операнда в определенном диапазоне величин. Например, 0.2лу = 0.2 для всех значений y > 0.2. Кроме этого, в ряде экспериментальных работ было установлено, что операции min и max не являются достаточно удовлетворительными с точки зрения моделирования лингвистических связок. Это привело к появлению работ по разработке строго монотонных операций в порядковых шкалах, по настраиваемым на эксперта табличным операциям, а также стимулировало исследования по поиску новых операций конъюнкции и дизъюнкции.

Во-вторых, расширение класса операций конъюнкции и дизъюнкции вызывалось необходимостью построения обладающих достаточной общностью математических моделей, которые могли бы с единых позиций рассматривать, например, вероятностные и многозначные логики, различные методы принятия решений, обработки данных и т.д. Такое расширение класса операций конъюнкции и дизъюнкции нечеткой логики произошло в результате введения в рассмотрение недистрибутивных операций конъюнкции и дизъюнкции, известных под названием /-норм и t-конорм. В первой главе было показано, что условие дистрибутивности совместно с условиями монотонности и граничными условиями однозначно определяет операции Заде. В ряде работ установлено, что именно условие дистрибутивности является наиболее жестким ограничением на возможную форму операций конъюнкции и дизъюнкции. Удаление этого свойства из множества аксиом устраняет единственность


операций min и max и дает возможность построения широкого спектра нечетких связок. Свойство дистрибутивности очень важно в логике, так как оно дает возможность совершать эквивалентные преобразования логических форм из дизъюнктивной в конъюнктивную форму и обратно. Это свойство активно используется в процедурах минимизации логических функций, в процедурах логического вывода на основе принципа резолюций и т.д. Однако, во многих задачах такие преобразования логических форм не являются необходимыми, и поэтому оказалось, что свойство дистрибутивности может быть «довольно безболезненно» удалено из системы аксиом, определяющих нечеткие операции конъюнкции и дизъюнкции. Понятия /-норм и t-конорм пришли в теорию нечетких множеств из теорий функциональных уравнений и вероятностных метрических пространств. Аксиомы этих операций дают возможность построения бесконечного числа логических связок. Основной аксиомой этих операций является ассоциативность, и свойства этих операций во многом определяются общими свойствами ассоциативных функций и операций, активно изучавшимися в математике.

В-третьих, рассмотрение логических операций конъюнкции и дизъюнкции как вещественных функций, являющихся компонентами нечетких моделей процессов и систем, естественно вызывает необходимость рассмотрения широкого класса таких функций, увеличивающих гибкость моделирования. По этим причинам, в ряде приложений нечеткой логики некоторые аксиомы t-норм и t-конорм также оказались ограничительными. В частности, параметрические классы этих операций имеют достаточно сложный вид для их аппаратной реализации и оптимизации нечетких моделей по параметрам этих операций. Сложность параметрических классов конъюнкций и дизъюнкций определяется способом генерации этих операций, который фактически определяется условием ассоциативности этих операций. С этой точки зрения свойство ассоциативности может рассматриваться как ограничительное. В то же время свойство коммутативности операций конъюнкции и дизъюнкции может рассматриваться как необязательное ограничение на эти операции, так как в общем случае в нечетких моделях операнды этих операций могут характеризовать переменные, по-разному влияющие на результат операции. Свойства ассоциативности и коммутативности являются важными, например, в нечетких моделях многокритериального принятия решений, поскольку одним из разумных требований, накладываемых на процедуры принятия решений, является их независимость от порядка рассмотрения альтернатив и критериев. Но для систем нечеткого вывода эти свойства не всегда являются необходимыми, особенно когда позиции переменных в нечетких правилах и процедуры обработки правил фиксированы, а также когда число входных переменных не превышает двух, что имеет место во многих реальных приложениях нечетких


моделей. По этой причине из определения нечетких операций конъюнкции и дизъюнкции могут быть удалены свойства коммутативности и ассоциативности так же, как это было ранее сделано со свойством дистрибутивности.

Простейшие системы нечеткого логического вывода, имеющие широкие приложения, основаны на правилах вида:

Ri: Если X есть Ai и Y есть Bi, то Z есть Ci, Ri: Если X есть Ai и Y есть Bi, то z=fi(x,y).

Здесь X, Y, Z - нечеткие переменные типа ТЕМПЕРАТУРА, ДАВЛЕНИЕ, ПЛОТНОСТЬ, Ai, Bi, Ci означают нечеткие значения этих переменных, например, ОЧЕНЬ ВЫСОКАЯ, НИЗКОЕ, БОЛЬШАЯ, определенные как нечеткие подмножества соответствующих множеств численных значений переменных, и fi - некоторые вещественные функции. Нечеткие модели, основанные на правилах первого или второго типа, соответственно называются моделями Мамдани или Сугено. Для заданных вещественных значений x и y сила срабатывания правила wi вычисляется как wi = T1(Ai(x),Bi(y)), где T1 - это некоторая операция конъюнкции, представляющая связку «и», и juAi(x), juBi(y) суть значения принадлежности x и y нечетким множествам Ai и Bi. Заключение правил может быть вычислено как /Ja(z) =T2(whjuci(z)), и Zi=T2(Wif(x,y)), где T2 это операция конъюнкции, используемая в операции импликации, и, возможно, отличная от T1. Для агрегирования заключений, полученных по всем правилам, может использоваться некоторая операция дизъюнкции или агрегирования. Кроме того, в моделях Мамдани используется процедура преобразования нечеткого множества, полученного в результате логического вывода, в число, называемая процедурой дефаззификации. Построение оптимальных нечетких моделей традиционно основано как на тьюнинге (настройке) функций принадлежности нечетких множеств, используемых в правилах, так и на тьюнинге операций. Когда эти функции принадлежности и операции задаются параметрически, тогда этот тьюнинг может быть основан на оптимизации этих параметров.

Оптимизация моделей по параметрам операций может производиться вместо или дополнительно к оптимизации параметров нечетких множеств. Однако реализация этого подхода может оказаться достаточно трудоемкой ввиду сложного вида известных параметрических классов t-норм и t-конорм, используемых в качестве операций конъюнкции и дизъюнкции. Кроме этого, аппаратная реализация подобных операций также сложна. С этих точек зрения более простые параметрические классы операций конъюнкции и дизъюнкции имеют преимущества. Рассмотрение неассоциативных операций конъюнкции и дизъюнкции позволяет строить простые параметрические классы этих операций.



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15] [стр.16] [стр.17] [стр.18] [стр.19] [стр.20] [стр.21] [стр.22] [стр.23] [стр.24] [стр.25] [стр.26] [стр.27] [стр.28] [стр.29] [стр.30] [стр.31] [стр.32] [стр.33]