Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[19]

2.5.5. Вентиляционные сети

В состав вентиляционной сети входят вентиляторы, воздуховоды, устройства управления расходом воздуха и датчики.

Этот вид элементов СКВ как объекта управления относится к транспортным звеньям САР, в которых может происходить изменение температуры воздуха и воды, а иногда и влагосодержания воздуха. Отсутствие или низкое качество изоляции, большая длина, малые скорости движения сред, большой перепад параметров движущейся среды и окружающего воздуха могут привести к колебательности процесса и к неустойчивости процесса регулирования. Это оказывает влияние на величину транспортного запаздывания тз, которое определяется как отношение длины воздуховода l к средней скорости движения воздуха. На рис. 2.35 показаны разгонная характеристика изменения температуры в воздуховоде и структурная схема этого звена.

К

х~1

о

tx-o

tx-l

с

щ (р)=к

Т-р+1

Рис. 2.35. Характеристика воздуховода как объекта управления:

а - переходной процесс изменения температуры; б - передаточная функция

При скачкообразном изменении х в начале воздуховода на выходе температура спустя время тз изменится небольшим скачком, а затем плавно приблизится к установившемуся значению. Таким образом, передаточная функция такого звена есть сложная трансцендентная функция, которая упрощенно может быть представлена в виде

K • e

-Т3 p

(2.25)

Для практического использования построены зависимости коэффициента передачи K от длины l, диаметра d и скорости воздуха ¥в [2].

При больших длинах воздухопроводов их влиянием на температуру воздуха пренебречь нельзя. При низкочастотных колебаниях температуры наружного воздуха (период тн = 24 ч) воздухопровод становится простейшим усилительным звеном. Для изолированных воздухо- и трубопроводов инерционность процесса теплопередачи в них необходимо учитывать. Оценка постоянной времени в этом случае может быть получена

из выражения T

25

где d - диаметр воздухо- и трубопровода, м.

При управлении процессом изменения температуры среды влияние транспортного запаздывания также подлежит уточнению. Особенно это существенно при длинных воздухо- и трубопроводах. В последних скорость воды может снижаться до 0,03-0,1 м/с и запаздывание тз может составлять от нескольких минут до часов. Отсюда понятны и практические рекомендации по установке датчиков и управляющих органов поближе к управляющему звену. При управлении расходом воздуха или воды при неизменной температуре влияния тз несущественно.


2.5.6. Датчики и регулирующие органы

Кроме рассмотренных выше аппаратов и устройств СКВ как звеньев систем регулирования в объекты управления необходимо учитывать датчики и регулирующие органы. Датчики параметров воздуха и тепловлагоносителей можно рассматривать как апериодическое звено первого порядка. Их инерционность (постоянная времени) зависит от конструкции и массы чувствительного элемента. Еще в более сильной степени инерционность зависит от скорости воздуха. При неподвижном воздухе постоянная времени датчиков достигает десятков минут и для помещений может оказаться самой большой постоянной среди звеньев объекта. Поэтому с целью снижения инерционности применяют локальное повышение скорости воздуха вблизи датчика, установку датчиков в приточном или рециркуляционном воздухопроводах и другие приемы.

Регуляторы расхода (клапаны) изменяют расход воздуха Gu или воды Gw при повороте створок на угол а или перемещении плунжера h. При мгновенном изменении а или h расход воздуха или воды также меняется мгновенно. Поэтому клапаны являются обычными усилительными звеньями, в которых входная и выходная величины связаны коэффициентом передачи. Для воздушного клапана KGB = AGd / Aa = f (a, Fra), где Fra -сечение клапана. Для водяного клапана при данном диаметре клапана и типе плунжера KGw » Ah = f (h) . Функции f (a, Fm) и f (h) обычно нелинейны, и коэффициенты

передачи при разных положениях а или h могут меняться значительно, если клапаны поставлены без расчета.

Обычно клапаны выбираются специалистами по вентиляции и кондиционированию, однако со стороны специалиста по автоматизации требуется проверка выбора клапана по управляемости и учета времени полного хода его штока. Последний показатель обычно задан техническими характеристиками привода клапана.

Литература:

1.Наладка средств автоматизации и автоматических систем регулирования: Справочное пособие /А. С. Клюев, А. Т. Лебедев, С. А. Клюев, А. Г. Товарнов; Под ред. А. С. Клюева. - 2-е изд., перераб. и доп. - М.: Энергоатомиздат, 1989. - 386 с.: ил.

2.Сотников А. Г. Автоматизация систем кондиционирования воздуха и вентиляции. Л., «Машиностроение», 1984. -235 с.: ил.

3.Нефелов С. В., Давыдов Ю. С. Техника автоматического регулирования в системах вентиляции и кондиционирования воздуха. - 2-е изд., перераб. и доп. - М.: Стройиздат,1984. - 328 с.: ил.

4.Промывная камера как звено системы регулирования установок кондиционирования воздуха. А. В. Степанов, И. В. Зингерман. - В кн.: Кондиционирование воздуха промышленных и общественных зданий. Ташкент,

ГИПРОНИИполиграф, 1970, с. 230-235.



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15] [стр.16] [стр.17] [стр.18] [стр.19]