Ремонт принтеров, сканнеров, факсов и остальной офисной техники


назад Оглавление вперед




[1]

При рождении звука голосовые связки, представляющие собой два упругих мускульных валика с окончаниями нервных волокон, приходят в состояние автоколебаний. Поток воздуха из легких прерывается. Возникает первичный звук, имеющий характер П-образных импульсов, частота следования которых определяет тип голоса: бас (80-320 Гц), баритон (100-400 Гц), сопрано (250- 1200 Гц) и т. д. Такой первичный звук (основной тон) имеет непрерывный (сплошной) спектр частот с убывающими амплитудами в диапазоне, примерно от 80 до 12000 Гц. Под воздействием изменяющихся резонансных объемов, образуемых в полости рта при различном положении языка, зубов и губ, спектрально-амплитудный состав звуковых колебаний изменяется - амплитуды одних частот усиливаются, других - ослабляются.

Каждому звуку речи соответствует усиление частот в одной или нескольких областях. Эти области, в пределах которых заключена значительная часть общей энергии звука, называются формант-ными областями или просто формантами. Звуки речи отличаются друг от друга числом формант и их расположением в частотном спектре. Отдельным звукам речи может соответствовать до шести формант, из которых только одна или две являются определяющими - основными. Если исключить из передачи любую из основных формант, то передаваемый звук исказится. Анализ звуков русской речи показывает, что хотя их форманты и расположены в спектре частот от 200 до 8600 Гц, однако подавляющее большинство основных формант находится в диапазоне 300-3400 Гц. Поэтому Международный консультативный комитет по телефонии и телеграфии (МККТТ) рекомендовал передавать по телефонному тракту этот диапазон тональных частот.

Звуковые колебания речи обладают весьма незначительной мощностью, которая при нормальной громкости разговора с учетом пауз в среднем равна 10 мкВт (без учета пауз-15 мкВт). Эта мощность соответствует звуковому давлению примерно 0,5 Па на расстоянии около 5 см от рта говорящего. Средняя мощность наиболее слабых звуков речи (при шепоте)-0,01 мкВт, а при крике - 1000- 5000 мкВт. Величина, характеризующая пределы изменения мощности речевого сигнала в логарифмическом масштабе, называется динамическим диапазоном речи, определяется она в децибелах:

D = 10 lg(/maX ) = 20 min )(1. 1)

где Imax, Imin (Pmax, Pmin) - максимальное и минимальное значения интенсивности звука (звукового давления) соответственно.

Интенсивность звука - количество энергии звуковых колебаний, проходящих через единицу поверхности, расположенную перпендикулярно к направлению ее распространения, за единицу времени. Интенсивность звука I и звуковое давление Р связаны соотношением I = кР2, где к - коэффициент, зависящий от величины атмосферного давления и температуры воздуха.

Для неискаженной передачи звуков различной возможной интенсивности необходимо обеспечить динамический диапазон речи Dp= 10 lg(5000/0,01) =57 дБ.

При передаче речи без выкриков достаточен динамический диапазон 30-40 дБ, поэтому такой динамический диапазон рекомендован для передачи по телефонным трактам.

1.3. Характеристики слухового восприятия

Воздействие упругих колебаний акустической среды на барабанную перепонку органа слуха воспринимается как звук. Человек может слышать звуки с частотами от 20 до 2000 Гц, однако чувствительность уха к звукам разных частот неодинакова. Наиболее восприимчиво ухо к звуковым сигналам с частотами в пределах 1000-4000 Гц. Характерно, что звуковые колебания небольшой интенсивности не воспринимаются ухом как звук. Минимальные значения интенсивности колебаний, воспринимаемых ухом как звук, называются порогом слышимости. Величина интенсивности колебаний, при которой в ухе возникают болевые ощущения, называется порогом болевого ощущения.

Орган слуха согласно психофизиологическому закону (который гласит, что прирост ощущения пропорционален логарифму раздражения) обладает логарифмической чувствительностью. Поэтому интенсивность звука / (звуковое давление Р) определяют не в абсолютных, а в логарифмических единицах - децибелах (дБ), называемых уровнями интенсивности (давления) звука В:

В = 10 lg (I/I0) или В = 20 lg (P/P0),(1.2)

где Iи Р - интенсивность звука и звуковое давление в Вт/м2 и Па, а I0=10-12 Вт/м2 и Р0=2х105 Па - интенсивность и звуковое давление нулевого уровня соответственно. Величины I0 и Р0 приняты за начало отсчета, поскольку они соответствуют порогу слышимости в области частоты 1000 Гц. При оценке уровней сложных звуков, например звуков речи и шума, используется понятие спектрального уровня, т. е. уровня энергии, приходящейся на полосу частот шириной 1 Гц.

Изменение интенсивности звукового колебания воспринимается на слух как субъективное изме-Основы автоматической коммутации7


нение громкости. Для ее объективной оценки пользуются уровнем громкости звука, вычисляемым из выражения

L=10 lg(W/0),

(1.3)

flojw ЬвлеЬэсА интимна*

где /10оо - интенсивность гармонического колебания частотой 1000 Гц, равногромкого исследуемому звуку, /0=10"12 Вт/м2 - интенсивность нулевого уровня слышимости. Уровень громкости L, в отличие от уровня интенсивности В, измеряют в фонах. На практике уровни громкости определяют по экспериментальным кривым равной громкости для звуков различных частот (рис. 1.2). Штриховкой показаны область слухового восприятия звуков и область, в которой заключены звуки речи. Приведенные кривые свидетельствуют о широких возможностях и исключительном совершенстве уха как индикатора звуковых колебаний. Например, при частоте 1000 Гц человеческое ухо способно воспринимать звуковые колебания интенсивностью от 1 до 10-12 Вт/м2, т. е. динамический диапазон слуха на этой частоте, определяемый по (1.1), составляет Dc = 101g(l/10-12) = 120 дБ.

При организации телефонной связи следует учитывать такие особенности слухового восприятия, как маскировка звука, адаптация и гармонические искажения слуха. Маскировкой звука называется понижение чувствительности уха к слабым звукам при одновременном воздействии звуков большей интенсивности. В результате маскировки звуков повышается порог слышимости сигнала при воздействии мешающего звука или шума по сравнению с порогом слышимости сигнала без помех. Адаптацией называется способность уха изменять свою чувствительность, т. е. приспосабливаться к интенсивности воздействующих звуковых колебаний. Прослушивание звуков значительной (малой) интенсивности приводит к повышению (понижению) порога слышимости. Это явление наиболее заметно при быстром чередовании звуков большой и малой интенсивности. Если, например, вслед за громким звуком сразу следует слабый звук, то последний не будет восприниматься, поскольку первоначальная чувствительность уха восстанавливается лишь после прекращения воздействия громкого звука через некоторое время (1,5-2 с). Гармоническими искажениями слуха называется возникновение в слуховом аппарате человека колебаний с частотами, отсутствующими в исходном звуке. Чем выше интенсивность звука, тем сильнее сказываются возникающие нелинейные искажения слуха. Это является одной из причин уменьшения разборчивости речи при очень громкой передаче.

8,дб по

100

so so

20

в

30 so 130

300 500 WOO 5000 20000

3000 wooo

Рис. 1.2, Семейство кривых равной гром косгн

1.4. Акустикоэлектрические и электроакустические преобразователи

Общие сведения. В качестве преобразователей в ТА применяют микрофон, включаемый на передающем конце телефонного тракта, и телефон или громкоговоритель - на приемном конце. Микрофон преобразует звуковую энергию, создаваемую голосом во время разговора, в электрическую энергию речевого сигнала, а телефон или громкоговоритель совершает oобратное преобразование - речевой сигнал преобразуют в звуковые колебания. Акустической нагрузкой телефона является замкнутый объем воздуха, ограниченный слуховым проходом уха. Громкоговорители предназначены для озвучения открытых пространств.

Большинство преобразователей содержит механическую колебательную систему, связанную с электрической цепью. При воздействии звуковых колебаний на колебательную систему изменяется сопротивление, емкость или другой параметр электрической цепи, что приводит к изменению величины тока. Если же преобразуются электрические колебания в звуковые, то изменения тока в цепи вызывают механические колебания подвижной системы, которые в свою очередь возбуждают звуковые колебания.

По принципу работы преобразователи делятся на электродинамические, электромагнитные, пьезоэлектрические, конденсаторные, транзисторные, электретные, угольные и др. В телефонной связи наибольшее распространение получили угольные микрофоны и электромагнитные телефоны. В электродинамических преобразователях используется принцип взаимодействия магнитных полей постоянного магнита и подвижной катушки индуктивности. При использовании таких преобразователей в качестве микрофона звуковые колебания воздействуют на подвижную катушку, она колеблется в постоянном магнитном поле и в катушке индуцируется ЭДС. Основным недостатком таких преобразователей является необходимость последующего усиления, поскольку индуцированная ЭДС имеет недостаточную величину. Еще больший коэффициент усиления необходим для конденсаторных мик-


рофонов, в которых происходят изменения емкости преобразователя при изменении интенсивности звуковых колебаний. Существенным недостатком пьезопреобразователей является их механическая непрочность. В электретных преобразователях используются имеющие постоянные поверхностные заряды постоянно поляризованные диэлектрики - электреты. Если электрет поместить между двумя металлическими электродами, включенными в электрическую цепь, и один из электродов использовать в качестве звукоприемника, то в электрической цепи потечет ток, частота которого будет соответствовать частоте возбуждаемых звуковых колебаний. Однако вопрос применения электретных и транзисторных преобразователей в телефонной связи еще недостаточно исследован.

Качество работы преобразователей оценивают чувствительностью. Под чувствительностью микрофона БМ понимают отношение действующего значения ЭДС на его зажимах Ем (в вольтах) к величине звукового давления Р (в паскалях). Чувствительностью телефона БТ называют отношение величины звукового давления Р (в паскалях), развиваемого телефоном в камере искусственного уха, к величине действующего значения переменного напряжения UT, приложенного к его зажимам (в вольтах). Чувствительность микрофона и телефона определяется из выражений SM = EM/PM и ST = PT/UT. Величина чувствительности преобразователей зависит от частоты. Эта зависимость S(f) называется частотной характеристикой чувствительности преобразователя. Эффективность работы преобразователя в рабочем диапазоне частот f1-f2 оценивается величиной его средней чувствительности:

S ср =

1

f2 - f

г) S (f )df.

1 f1

(1.4)

Отклонение чувствительности преобразователя на разных частотах от его среднего значения приводит к частотным искажениям. Степень такого отклонения оценивается неравномерностью частотной характеристики чувствительности, определяемой в децибелах по формуле

AS = 20 lg(Smox/Smin),

где Smax, Smin - наибольшее и наименьшее значения чувствительности преобразователя в рабочем диапазоне частот f1 и f

Амплитудной характеристикой преобразователя называется зависимость сигнала на выходе (при постоянной частоте возбуждения) от сигнала на его входе. Линейный участок этой характеристики обычно ограничен величинами минимального и максимального значения сигналов на входе преобразователя. Подставляя значения звукового давления или подводимого напряжения (1.1), определяют динамический диапазон преобразователя.

Преобразователи также характеризуются электроакустическим коэффициентом, под которым понимают отношение мощности сигнала на выходе к мощности на его входе.

Угольный микрофон. Действие угольного микрофона основано на свойстве угольного порошка изменять свое сопротивление при изменении воздействующего на порошок давления. Под действием звуковых волн мембрана 4 (рис. 1.3 а, б) с закрепленным на ней подвижным электродом 3 приходит в колебательное движение и изменяет плотность угольного порошка 2. При уплотнении порошка сопротивление между подвижным 3 и неподвижным 1 электродами уменьшается, а при разрыхлении - увеличивается. Изменение сопротивления угольного порошка приводит к появлению пульсирующего тока. Постоянная составляющая этого тока I0 является током питания микрофона в состоянии покоя, а его переменная составляющая представляет собой разговорный ток. Если на угольный микрофон сопротивлением Ям воздействовать, например, синусоидальным звуковым колебанием Р(со) с частотой со, то мгновенное значение тока i в цепи сопротивления RH (см. рис. 1.3 б) можно определить из уравнения, которое после разложения в ряд (используется бином Ньютона) приводится к виду



[стр.Начало] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7] [стр.8] [стр.9] [стр.10] [стр.11] [стр.12] [стр.13] [стр.14] [стр.15] [стр.16] [стр.17] [стр.18] [стр.19] [стр.20] [стр.21] [стр.22] [стр.23] [стр.24] [стр.25] [стр.26] [стр.27] [стр.28] [стр.29] [стр.30] [стр.31] [стр.32] [стр.33] [стр.34] [стр.35] [стр.36] [стр.37] [стр.38] [стр.39] [стр.40] [стр.41] [стр.42] [стр.43] [стр.44] [стр.45] [стр.46] [стр.47] [стр.48] [стр.49] [стр.50] [стр.51] [стр.52] [стр.53]